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ABSTRACT

Multi-conjugate adaptive optical (MCAO) systems with from 104 to 105 degrees of freedom have been proposed
for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront
reconstruction algorithms for these systems is impractical, since the number of calculations required to compute
(apply) the reconstruction matrix scales as the cube (square) of the number of AO degrees of freedom. Signi�cant
improvements in computational eÆciency are possible by exploiting the sparse and/or periodic structure of the
deformable mirror in
uence matrices and the atmospheric turbulence covariance matrices appearing in these
calculations. In this paper, we review recent progress in developing an iterative sparse matrix implementation of
minimum variance wavefront reconstruction for MCAO. The basic method is preconditioned conjugate gradients,
using a multigrid preconditioner incorporating a layer-oriented, iterative smoothing operator. We outline the
key elements of this approach, including special considerations for laser guide star (LGS) MCAO systems with
tilt-removed LGS wavefront measurements and auxiliary full aperture tip/tilt measurements from natural guide
stars. Performance predictions for sample natural guide star (NGS) and LGS MCAO systems on 8 and 16 meter
class telescopes are also presented.

Keywords: Adaptive optics, wavefront reconstruction, extremely large telescopes

1. INTRODUCTION

Recent years have seen signi�cant progress in the understanding and design of multi-conjugate adaptive optics
(MCAO) systems for wide-�eld-of-view atmospheric turbulence compensation on large, or 8-10 meter class, tele-
scopes.1 An important contributor to this progress has been the availability of analytical methods and detailed
simulation tools to optimize wavefront reconstruction algorithms for these systems. Minimum variance wave-
front reconstruction methods2 permit the �rst-order e�ects of the most fundamental AO error sources (�tting
error, reconstruction error due to noise, generalized anisoplanatism, and servo lag) to be rapidly and accurately
evaluated as a function of basic adaptive optics (AO) system design parameters. These include the deformable
mirror (DM) and wavefront sensor (WFS) actuator and subaperture geometries, WFS measurement noise, the
con�guration of natural- and laser guide stars and the DM conjugate altitudes, and the control loop bandwidth.
Minimum variance wavefront reconstruction was originally devised for conventional AO con�gurations, but a
standard formulation for MCAO is now well developed.3{5 Wave optics propagation simulations6 serve the com-
plementary function of providing detailed analyses of higher-order e�ects and implementation error sources,
such as: Elongated laser guide stars, propagation (di�raction) e�ects in the atmosphere, optics, and wavefront
sensors, DM-to-WFS mis-registration, and non-common path wavefront errors. All of these phenomena may be
investigated in detail using existing simulation codes.

Further author information: (Send correspondence to B.L.E)
B.L.E.: E-mail: bellerbroek@gemini.edu, Telephone: 1 (808) 974-2575
C.R.V: E-mail: vogel@gauss.math.montana.edu, Telephone: 1 (406) 994-5332



In contrast with large telescopes, the current capabilities for detailed analysis and simulation of MCAO
on giant (30 meter or larger class) telescopes are fairly limited. The chief obstacle to applying the standard
evaluation tools described above is calculating the minimum variance reconstructor in the �rst place. The
computational complexity of this step scales as O(N3) when employing standard matrix techniques, where N
is the order of the AO system. Assuming �xed densities for the DM actuators and WFS subapertures, the
computational requirements for calculating the reconstructor for a 32-meter telescope increase by a factor of
about [(32=8)2]3 = 4096 relative to the 8-meter case. The resulting computation time on a high-performance PC
or workstation would be completely impractical for MCAO parameters of current interest for giant telescopes.

If this bottleneck in computing the minimum variance reconstructor can be eliminated, the processing
requirements for the remaining steps in detailed simulations of MCAO on a (for example) 32 meter telescope are
comparatively benign. Propagating wavefronts through atmospheric phase screens is by far the most demanding
simulation computation, and the minimum phase screen size that is acceptable for both the 8- and 32-meter
cases is set at a common value of about 50-60 meters by the atmospheric outer scale dimension of 20-30
meters.7 Fast methods for computing (and if possible applying) minimum variance reconstructors will enable
high-�delity wave optics propagation simulations for 30-meter class MCAO systems with roughly the same
computational requirements as the 8-meter case. Developing this modeling capability is an important milestone
toward understanding, evaluating, and designing such systems.

Recent progress in developing computationally eÆcient wavefront reconstruction algorithms for AO systems
in general includes work on fast Fourier transform (FFT) algorithms, sparse matrix methods, and iterative pre-
conditioned conjugate gradient (PCG) techniques.8{10 All three approaches yield impressive results for extreme
AO (ExAO) systems in which a single very-high-order DM is controlled using a single WFS. The computa-
tional complexity of computing and applying the reconstructor can be reduced from O(N3) to O(N3=2) or even
O(N logN). Unfortunately, all three of these methods are either unsatisfactory or inapplicable for the case of
MCAO on giant telescopes due to the more complex structure of the interactions between atmospheric turbu-
lence and WFS measurements. The present version of the FFT reconstructor and the original formulation of
the PCG algorithm cannot be used at all. Sparse matrix methods are still usable in principal with complexity
O(N3=2), but they become cumbersome for MCAO systems with order N > 3000 because the sparsity of the
turbulence-to-WFS interaction matrix is signi�cantly poorer when multiple sensors and phase screens must be
considered.9

This paper describes a new version of the iterative PCG wavefront reconstruction algorithm that can be
used for MCAO on giant telescopes. Recall that \conjugate gradients" is a standard iterative method for
solving linear systems of equations of the form Ax = y (as is required for wavefront reconstruction), and that
a \preconditioner" is an algorithm for �nding an approximate solution to this system that is applied once
per iteration to improve the rate of convergence. The new preconditioner is inspired by the layer-oriented
MCAO systems and algorithms of current interest, in which each deformable mirror is independently controlled
using a wavefront sensor optically conjugated to the identical atmospheric layer.12, 13 In our new approach,
these wavefront measurements are in e�ect obtained synthetically as linear combinations of multiple WFS
measurements recorded in the pupil plane. The three-dimensional atmospheric turbulence pro�le is related
to these synthetic measurements via a block-structured linear system of equations, with the matrix blocks in
one-to-one correspondence with the turbulence layers. We use symmetric block Gauss-Seidel (SBGS) iterations
as a preconditioner to �nd an approximate solution to this system. Each phase screen is estimated from the
corresponding synthetic WFS measurement using sparse matrix methods that are computationally eÆcient for
the the case of a single atmospheric layer. The SBGS iterations approximately compensate for the cross-coupling
between the multiple turbulence layers, much like multiple iterations of the control loop for layer-oriented
MCAO.

The remaining features of the approach have been preserved from previous work to improve computational
eÆciency and increase generality. We use multigrid preconditioning to solve for the turbulence pro�le on all
spatial scales simultaneously and improve the rate of convergence for the low spatial frequency terms. The
conjugate gradient algorithm prevents possible stagnation due to poor conditioning of the system of equations
that must be solved. All large matrices and matrix-vector operations can be implemented using block-structured
sparse matrix representations and techniques, allowing 30-meter class MCAO problems with on the order of 104



to 105 degrees of freedom to be solved on a high-performance PC in a reasonable period of time. The block-
structured representation of the preconditioning computations means that they may be coarsely parallelized
with reasonable eÆciency in a straightforward fashion. Finally, the complications arising from LGS position
uncertainty and the use of natural guide stars to measure full aperture tip/tilt in LGS MCAO systems can be
addressed via low-rank matrix perturbations and the use of the Sherman-Morrison matrix inversion lemma.

The remainder of the paper is organized as follows: Section 2 brie
y reviews the elements of the minimum
variance wavefront reconstruction problem and summarizes one of the standard forms of the solution. Section
3 describes how to improve computational eÆciency in the general case via Cholesky factorization of sparse
matrices, and section 4 then specializes the general form of the minimum variance reconstructor into the block-
structure representation used here for MCAO. Section 5 outlines how the resulting linear system of equations
may be solved using SBGS iterations, and section 6 reviews the basic elements of multigrid methods and the
preconditioned conjugate gradient algorithm as used here (Please see our earlier and concurrent papers9{11 for
further details).

Section 7 summarizes sample numerical results obtained to date for NGS and LGS MCAO systems on 8 to
16 meter class telescopes. Brie
y, we �nd that convergence rates are similar for both NGS and LGS systems and
do not degrade appreciably as order of the system increases. Convergence rates do depend on the WFS signal to
noise ratio, with more iterations needed to obtain the performance improvements theoretically possible as the
measurement noise is reduced. Only a few iterations of the complete conjugate gradient algorithm are needed
for convergence at a potentially realistic WFS noise level. The time required (or estimated) per iteration for a
D = 16m (or D = 32m) MCAO system is about 400 (or 1800) seconds on a 1 GHz Pentium III processor. This
is suÆciently eÆcient to enable simulations of up to a few hundred cycles of the AO control loop, and further
improvements should be possible via parallel processing.

2. MINIMUM VARIANCE WAVEFRONT RECONSTRUCTION

A brief review of minimum variance wavefront reconstruction is helpful at this point to introduce the necessary
notation and to de�ne the linear systems of equations needing to be solved. The purpose of the reconstruction
algorithm is to determine a DM actuator command vector a that best compensates for an atmospheric turbulence
pro�le x, and minimizes the mean-square phase variance �2 associated with the residual wavefront error �. These
quantities are related by the formulas

� = Hxx�Haa; (1)

�2 = �TW�: (2)

Here Hx and Ha are the in
uence matrices that relate the turbulence pro�le and DM actuator commands to
the resulting wavefront in the aperture plane, and W is a positive semide�nite matrix determined by the shape
of the aperture. The reconstruction algorithm is a linear operator E applied to the WFS measurement vector
s, i.e.

a = Es: (3)

In the open-loop case, the WFS measurement vector s is related to the turbulence pro�le x by the equation

s = Gx+ n; (4)

where the matrix G is the turbulence-to-WFS in
uence matrix, and the vector n is WFS measurement noise.
The above model may be formulated to apply to either conventional AO or MCAO systems.

In this notation, the minimum variance reconstructor E� that minimizes the expected value of �2 is de�ned
by the condition

E� = argmin
E



�2 + kjjajj2

�
: (5)

The angle brackets denote an ensemble average over the statistics of the turbulence pro�le x and the WFS noise
vector n, and k is a very small regularizing term included to yield a unique value of E�. Using standard least



squares techniques,5, 9 the value of the minimum variance reconstructor may be evaluated as

E� = FxEx; (6)

Fx =
�
HT
a WHa + kI

��1
HT
a WHx; (7)

Ex =
h
GT



nnT

��1
G+



xxT

��1
i�1

GT


nnT

��1
: (8)

The matrix Ex provides a minimum-variance estimate of the atmospheric turbulence pro�le x, and the matrix
Fx determines the best-�t actuator commands for this estimate. The forms of the expressions for the two
matrices are analogous, and the primary computational complexity to be avoided is explicit matrix inversion
of the two terms appearing within square brackets. For the turbulence estimation operator Ex this can be
accomplished by �rst computing the intermediate quantity y de�ned by

y = GT


nnT

��1
s; (9)

and then solving the (symmetric, positive-semi-de�nite) system of equations

Ax =
�
GT



nnT

��1
G+



xxT

��1
�
x = y: (10)

for x. We will focus attention on the turbulence estimation operator Ex for the remainder of this discussion, but
all of the methods described below can also be applied to the �tting operator Fx with only minor modi�cations.

3. SPARSE MATRIX METHODS

The in
uence matrices Hx, Ha, and G are quite sparse for many DM and WFS technologies, such as piezo-stack
mirrors and Shack-Hartmann wavefront sensors. This fact enables fast implementations of the operators Fx and
Ex using sparse matrix techniques if certain assumptions are made regarding the structure of the matrixW and
the statistics of x and n. For example, if the noise covariance matrix



nnT

�
is diagonal and the statistics of x

are such that the term


xxT

��1
can be neglected, it follows that GT



nnT

��1
G+



xxT

��1
= GT



nnT

��1
G is

sparse and can be factored in the form LLT , where L is also sparse and lower triangular.� The computation of
~x = Exs (where ~x is the estimate of the true turbulence pro�le x) may then be determined eÆciently in three
steps as follows:

x1 = GT


nnT

��1
s ; Lx2 = x1 ; LT ~x = x2: (11)

The last two steps are back substitutions through triangular, sparse matrices. The computational complexity
for determining L is O(N3=2), as compared with O(N3) for the explicit computation of Ex, yielding signi�cant
improvements in speed for AO systems of order as small as 100.14

The use of sparse matrix methods (more speci�cally, minimum degree ordering and Cholesky factorization
of sparse matrices15) for this least squares form of the reconstructor has been known for nearly two decades,
but the improvements needed to apply these technique to the general (MCAO) case were developed only last

year.9 This advance involved �nding a sparse approximation to the regularizing term


xxT

��1
that does not

noticeably degrade reconstruction accuracy, and using the Sherman-Morrison theorem (also known as the matrix
inversion lemma) to evaluate the e�ect of non-sparse, but low rank, modi�cations to G associated with the tilt
uncertainty problem for laser guide stars. With these modi�cations, sparse matrix methods provide a means
of computing and simulating minimum variance reconstructors for very-high-order (or \extreme") conventional
AO systems of any dimensionality now being considered. Computation requirements are reduced signi�cantly
for MCAO systems as well, although by a smaller factor because the matrix L is appreciably less sparse due
to the increased cross-coupling between multiple turbulence layers and guidestars. Reconstructor computations
for 16 meter class systems with N = 3000 or 4000 are relatively straightforward, but the case of D = 32m with
N = 10000 remains very cumbersome for the current generation of workstations and PC's. This restriction has
as much to do with the limitations of 32-bit memory addressing schemes as with computation times.

�This is essentially noise-weighted least squares wavefront reconstruction.



4. BLOCK-STRUCTURED REPRESENTATIONS FOR MCAO

We have developed a block-structured (or layer oriented) MCAO wavefront reconstruction algorithm to circum-
vent the limitations of sparse matrix methods as summarized above. To formulate this method, Eq. (4) must
be replaced by a more complete model that describes how the WFS measurement vector s depends upon each
of the atmospheric turbulence layers. For LGS MCAO, we must also distinguish between LGS and NGS WFS
measurements to illustrate how the e�ects of LGS position uncertainty are are accounted for using low-rank
matrix adjustments. The re�ned formula for s takes the form

s =

�
sh
st

�
=

�
Gh

Gt

�
x+

�
nh
nt

�
(12)

=

�
Gh;1 � � � Gh;L

Gt;1 � � � Gt;L

�0B@
x1
...
xL

1
CA+

�
nh
nt

�
:

Here sh is the higher-order wavefront measurement from the LGS wavefront sensors, st is the vector of tip/tilt
measurements from the full aperture NGS sensors, nh and nt are the noise components of the higher-order and
tip/tilt WFS measurements, xl is layer number l of the overall three-dimensional turbulence pro�le, and L is
the number of turbulence layers. Gh;l and Gt;l are the in
uence matrices from turbulence layer l to the LGS
and NGS WFS measurements, respectively. Gh;l is a sparse matrix, and Gt;l is a low rank matrix because the
dimensionality of st is small.

The covariance matrices appearing in Eq. (8) for the minimum variance reconstructor can also be described
in greater detail for the case of LGS MCAO. Atmospheric turbulence statistics are assumed to be uncorrelated
between separate layers, so the inverse of the turbulence pro�le covariance matrix appearing in Eq. (8) may be
written as 


xxT
��1

= diag
�

x1x

T
1

��1
; : : : ;



xLx

T
L

��1
�
: (13)

Each diagonal block appearing on the right hand side of Eq (13) may be accurately represented via a sparse
approximation as described previously.9 Also, the WFS noise covariance matrix takes the form



nnT

�
=

�
Nh + �2TTT

T 0
0 Nt

�
; (14)

where Nh and Nt are diagonal matrices describing the noise in the WFS measurements themselves, �2T is the
mean-square position uncertainly for each LGS, and T is a low-rank matrix of 1's and 0's that relates LGS
position uncertainty to correlated LGS WFS measurement errors on all of the subapertures of a WFS. In the
limit of an in�nitely large value for �2T , the Sherman-Morrison matrix inversion formula allows the inverse of
the WFS noise covariance matrix to be written as



nnT

��1
=

�
N�1
h � V V T 0

0 N�1
t

�
; (15)

where V is a low-rank matrix with a number of columns equal to twice the number of laser guide stars.9 Note
that we can consider the case of NGS MCAO as well by setting V = 0 and de�ning st, Gt, and nt to be null
vectors and matrices.

With the above notation, Eq. (9) for y now takes the block-structured form

yl = GT
h;l(N

�1
h sh) +GT

t;l(N
�1
t st)� (GT

h;lV )(V
T sh) l = 1; : : : ; L: (16)

Each component yl may be computed eÆciently using a combination of diagonal matrix-vector multiplies, sparse
matrix-vector multiplies, and low-rank matrix-matrix and matrix-vector multiplies involving matrices (V and
V T ) of low dimension. Next, the linear system Ax = y in Eq. (10) may be written as0

B@
A11 � � � A1L

...
. . .

...
AL1 � � � ALL

1
CA
0
B@

x1
...
xL

1
CA =

0
B@

y1
...
yL

1
CA ; (17)



where the blocks of the matrix A are de�ned by the formulas

Akl =

8<
:

GT
h;kN

�1
h Gh;l +

h
GT
t;kN

�1
T Gt;l � (GT

h;kV )(G
T
h;lV )

T
i

if k 6=l,

GT
h;lN

�1
h Gh;l +



xlx

T
l

��1
+
h
GT
t;lN

�1
T Gt;l � (GT

h;lV )(G
T
h;lV )

T
i

if k =l.
(18)

Each block Akl is a sum of a sparse term or terms, plus a low rank adjustment by the terms grouped above within
square brackets. The following section outlines one approach to eÆciently �nding an approximate solution to
this system of equations.

5. SOLUTION VIA SYMMETRIC BLOCK GAUSS SEIDEL ITERATIONS

As with several other iterative methods for solving a linear system of equations, SBGS is based upon a \splitting"
of the matrix A into diagonal and o�-diagonal parts. We write

A = D + L+ U; (19)

where the matrices D, L, and U represent the diagonal, lower triangular, and upper triangular blocks of the
matrix A, respectively. With this decomposition, the relationship Ax = y is equivalent to either of the formulas

(D + L)x = y � Ux; (20)

(D + U)x = y � Lx: (21)

These relationships may be used to �nd an approximation solution for x, starting with the initial conditions
x(0) = 0 and y(0) = y = y � Ux(0) and iterating as follows:

(D + L)x0(n+ 1) = y(n); (22)

y0(n+ 1) = y � Lx0(n+ 1); (23)

(D + U)x(n+ 1) = y0(n+ 1); (24)

y(n+ 1) = y � Ux(n+ 1): (25)

The matrix D + L is zero above the (block) diagonal, so Eq. (22) is equivalent to the system of equations

Allx
0
l(n+ 1) = yl(n)�

X
k<l

Alkx
0
k(n+ 1) l = 1; : : : ; L: (26)

Eq. (26) reduces to A11x
0
1(n + 1) = y1(n) for the case l = 1, which may be solved eÆciently for x01 using

the Sherman-Morrison matrix inversion formula and Cholesky factorization of the sparse component of A11 as
previously described.9 The right-hand-side of Eq (26) for l = 2 can then be computed from y2(n) and x

0
1(n+1),

which allows x02(n+1) to be determined using the same techniques. After the subvectors x03(n+1); : : : ; x0L(n+1)
have been computed similarly, Eq. (23) may be evaluated as

y0l(n+ 1) = yl �
X
k<l

Alkx
0
k(n+ 1) l = 1; : : : ; L: (27)

The block-structured representations of Eq.'s (24) and (25) are entirely analogous, and the complete SBGS
iteration may be implemented in terms of operations involving only sparse and low-rank matrices.

We note that the diagonal blocks All appearing on the left-hand-side of Eq. (26) are quite sparse regardless of
the number of atmospheric layers L, the number of WFS guide stars, or the �eld-of-view of the MCAO system,
since each point on an atmospheric phase screen will only interact with its immediate neighbors regardless of
the values of these parameters. Eq. (26) therefore avoids the �ll-in and loss of computational eÆciency that
occurs when the entire system Ax = y is solved via a single Cholesky factorization.

Finally, our initial impression is that SBGS should be fairly straightforward to parallelize, given the block-
structured form of the equations listed above.



6. MULTIGRID AND CONJUGATE GRADIENT METHODS

The SBGS iteration scheme described above will eventually converge to the same phase estimate that would
be obtained by explicitly evaluating and applying the minimum variance estimator using conventional matrix
techniques. It happens that convergence is most rapid for the high spatial frequency components of the solution,
however, and stagnation (very slow convergence) may occur for the low spatial modes of the phase pro�le that
are the dominant terms for a Kolmogorov or von Karman turbulence spectrum. Multigrid methods provide
accelerated convergence at low spatial frequencies by (as the name suggests) solving for x atM di�erent spatial
scales in series. This process requires representations A(M); : : : ; A(1) of the operator A at each spatial scale,
restriction (or binning) operators B(m) to downsample functions from scale m to scale m � 1, interpolation
operators I(m) for upsampling, and a \smoothing" operator (in this case SBGS iterations) f(A; y; xs) to �nd
an approximate solution for Ax = y beginning with an initial guess xs. The steps involved in a single multigrid
iteration are brie
y as follows:

1. Estimate x on the �nest spatial scale as x(M) = f(A(M); y; 0).

2. Compute the residual error r(M) = y �A(M)x(M) in the �t to y associated with this estimate of x.

3. Downsample this residual to obtain a new value of y = y(M�1) = B(M)r(M) on the next �nest grid level.

4. Estimate the downsampled value of x(M�1) = f(A(M�1); y(M�1); 0) on this grid.

5. Repeat steps 2 through 4 until reaching the lowest grid level, and then compute the coarsest solution
x(1) = (A(1))�1y(1) exactly.

6. Upsample the coarsest solution and sum it with the solution at the next level, updating x(2) as x(2) +
I(1)x(1).

7. Apply the smoother f a second time to reduce the high-spatial frequency error induced by the upsampling
process, updating x(2) as f(A(2); y(2); x(2)).

8. Iterate steps 6 and 7 until the �nest spatial scale is reached.

Note that the interpolation and binning operators I and B may be represented as block-structured sparse
matrices, and that the only full matrix-vector multiply required (in step 5) occurs on the coarsest grid where
the dimensionality of the vectors involved is small. The computational complexity of a multigrid iteration is
consequently de�ned by the structure of the matrices A(m) and the implementation of the smoothing operator
f , which in this case consists of sparse matrix-vector multiplies, low rank matrix-vector multiplies, and back-
substitutions through Cholesky factorizations of sparse matrices.

The multigrid algorithm can be applied iteratively in its own right, but convergence may still stagnate
depending upon the eigenvalue structure of A. Better results may be obtained by using multigrid as a precon-
ditioner for the conjugate gradient algorithm, provided that the operators B and I and the smoother f satisfy
certain conditions to insure that the composite operator de�ned by steps 1-8 above is symmetric. Further details
may be found in the companion paper appearing in this volume.11

Finally, the rate of convergence will also depend upon the number of SBGS iterations applied in each
application of the smoothing operator f , the relative size of successive grid levels, and the total number of grid
levels M . We have determined empirically that good results (in terms of the total computer time required for
convergence) for this application are obtained by using a single SBGS iteration, a 2:1 reduction in grid sizes,
and a large value for M .



Table 1. Atmospheric turbulence pro�le used for simulations

Layer Altitude, km Layer weight

1 0.00 0.652

2 2.58 0.172

3 5.16 0.055

4 7.73 0.025

5 12.89 0.074

6 15.46 0.022

7. SAMPLE NUMERICAL RESULTS

This section presents performance estimates for a range of sample NGS and LGS MCAO systems on 8 and 16
meter class telescopes. The cases considered form a subset of the scenarios previously evaluated using the sparse
matrix implementation of the minimum variance reconstructor.9 In revisiting these scenarios we will focus on
the convergence behavior of the PCG wavefront reconstruction algorithm, not the performance of the MCAO
con�gurations themselves.

Table 1 summarizes the atmospheric turbulence pro�le used for these simulations. This pro�le is a six-layer
�t to thermosonde and generalized SCIDAR measurements collected at Cerro Pachon, Chile, the site of the
Gemini-South telescope.7 The pro�le has been scaled to obtain a r0 of 16 cm at a wavelength of 0:5�m, which
corresponds to roughly median seeing. The value of the isoplanatic angle �0 is 2.65 arc sec, or 12:85�rad.

The parameters for the 8- and 16-meter MCAO systems evaluated against this turbulence pro�le are for
the most part borrowed from the baseline design for a MCAO system at Gemini-South.1 The �eld-of-view to
be corrected is a one arc minute square. Three deformable mirrors are located conjugate to ranges of 0.0, 5.15,
and 10.30 kmy, with inter-actuator spacings of 0.5 m, 0.5 m, and 1.0 m, respectively. The total number of DM
actuators on the three mirrors is 789 for D = 8m and 2417 for D = 16m.

The three DM's are controlled using �ve higher-order wavefront sensors viewing guidestars at the center and
four corners of the 1 arc minute square �eld of view. The subaperture width is 0.5 m for each WFS, yielding
224 subapertures per WFS at D = 8m and 856 subapertures at D = 16m. For LGS MCAO the (sodium) guide
stars are located at a range of 90 km. In this case, four natural guide stars located at the midpoints of the edges
of the �eld are included for full aperture tip/tilt sensing.z Two di�erent noise levels of 0.02 and 0.08 arc sec
have been considered for the high-order wavefront sensors. The e�ect of measurement noise is almost negligible
for the lower value, while the higher noise value approximately doubles the mean-square phase error averaged
over the �eld. The noise levels for the NGS tip/tilt sensors in the LGS MCAO system are scaled down by the
ratio of the subaperture sizes (i.e., a factor of 8/0.5=16 for D = 8m and a factor of 32 for D = 16m) to yield
the same phase di�erence measurement error.

Before proceeding to the results themselves, we should note that very similar simulation cases are considered
in the companion paper appearing in this volume.11 However, there are a variety of modest di�erences between
our separate software implementations that should be recognized when comparing the two papers:

� The simulation code developed for this paper employs either preconditioned conjugate gradients or com-

plete Cholesky factorization for both the turbulence estimation and actuator �tting steps of the recon-
structor. The choice can be made separately for each of the two steps, and all of the results presented in
this section use PCG for turbulence estimation and complete Cholesky factorization for �tting.

yThis is a modest variation from the Gemini-South values of 0.0, 4.5, and 9.0 km.
zThis deviation from the 3 NGS proposed for Gemini-South yields symmetric performance over the square �eld of

view, which simpli�es performance analysis.



� The multigrid preconditioner used here consists of 4 levels for the simulations with D = 8m, and 5 levels
for D = 16m. The smoothing operator consists of a single SBGS iteration (just as in the companion
paper).

� The turbulence estimation step computes each atmospheric layer over a region slightly larger than the
metapupil, instead of a square domain with a large guard band surrounding the metapupil.

� Boundary e�ects at the edge of the circular telescope aperture have been modeled more precisely, including
the e�ect on measurements from partially illuminated WFS subapertures.

� Performance evaluation is based on high resolution phase screens with a grid point spacing equal to one-
sixteenth the DM inter-actuator spacing. This yields a better estimate for the true value of the �tting error,
and also models the \spatial aliasing" of high frequency wavefront errors into the WFS measurements.

� The SBGS smoother and multigrid algorithm have been implemented using MATLAB cell arrays to
represent block-structured matrices, but the in
uence matrices G, Hx, and Ha are initially computed as
generic sparse matrices. We have not yet upgraded this vestige of our previous sparse matrix code. High
resolution simulations of MCAO systems on D = 32m telescopes are consequently not yet feasible, since
MATLAB presently restricts the product of the dimensions of a sparse matrix to 232, regardless of the
number of nonzero elements.

Sample results for the D = 8m cases are summarized in Fig. 1. The four subplots illustrate the mean-square
phase estimation and �tting errors vs. the number of PCG iterations for NGS and LGS MCAO systems and
the two di�erent WFS noise levels listed above. The mean-square phase errors have been normalized by the
open-loop phase variance, and the results are averages over 10 simulation trials. The performance of the exact
minimum variance reconstructor is also plotted for comparison. The PCG algorithm converges to very nearly
the exact solution within only one or two iterations at the higher WFS noise level of 0.08 arc sec, while 4-5
iterations are required for convergence at the lower noise level. It appears that convergence is approximately
one iteration slower for LGS MCAO than for NGS MCAO, but the distinction is not dramatic.

Fig. 2 illustrates the convergence behavior of the PCG wavefront reconstruction algorithm for simulations
of MCAO on 16-meter telescopes. The convergence rates are essentially the same at D = 16m as at D = 8m,
and this trend should continue for even larger aperture thanks to the use of a multigrid preconditioner.

Finally, Fig. 3 plots the processing time needed per iteration of the PCG wavefront reconstruction algorithm
as a function of the dimensionality of the turbulence pro�le vector x. These times are for a 1 GHz Pentium III
processor, and the results obtained for D = 8m and D = 16m have been extrapolated to the case of D = 32m
using a power law. LGS MCAO cases require slightly more time than NGS MCAO due to the extra low-rank
matrix operations, but this overhead is small and evidently becomes negligible as the dimensionality of the
problem increases. Note that dim(x) � 70; 000 for D = 32m, and that the time required is approximately
one-half hour per PCG iteration. This would enable simulations of 50 to 100 wavefront reconstruction cycles if
we are willing to wait 1-2 weeks for results. Faster results should be possible using newer PC's, especially if the
SBGS smoother can be parallelized.
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Figure 1. Convergence rates for MCAO with D = 8m
This �gure plots the mean-square phase estimation error vs. the number of preconditioned conjugate gradient (PCG)
iterations for order 16 by 16 NGS and LGS MCAO systems and two di�erent levels of WFS measurement noise. The
telescope aperture diameter is 8 meters, and the mean-square errors are expressed as a fraction of the open-loop phase
variance before AO compensation. For comparison, the dashed baselines plot the mean-square phase estimation and
�tting errors for the exact minimum variance turbulence estimator. The numerical range for the vertical axis is 2� 10�3

to 2� 10�2. Further details on the AO system parameters and wavefront reconstruction algorithm may be found in the
text.
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