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ABSTRACT

Multi-conjugate adaptive optics (MCAO) systems with 104 − 105 degrees of freedom have been proposed for
future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control
algorithms for these systems is impractical, since the number of calculations required to compute and apply
the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of
freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront
reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the pre-
conditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block)
symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to
illustrate algorithm convergence.
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1. INTRODUCTION

Conventional Adaptive Optics (AO) has now successfully been implemented on ground-based imaging sys-
tems,1–3 and there is a growing interest in developing, what will be the next step in imaging through volume
turbulence, wide field imaging using Multi-Conjugate Adaptive Optics (MCAO).4–8 Using multiple guide stars
and multiple deformable mirrors (DM’s), MCAO aims at breaking the small field of view (FoV) barrier inherent
in conventional AO and the conical anisoplanatism inherent when using laser guide stars (LGS’s). Such systems
represent a huge leap in complexity from single mirror systems, and the task of creating an optimal scheme to
control them is far from being trivial.

Wavefront reconstructors estimate a set of DM commands from wavefront sensor (WFS) slope measurements.
Real-time wavefront reconstructors employ either a vector-matrix-multiply (VMM) or an iterative algorithm to
compute the commands. Direct evaluation of the control matrix becomes increasingly difficult as the number
of actuators n increases, since the processing time to compute the matrix and apply it to sensor data with a
VMM scales approximately respectively as n3 and n2 (i.e. D6 and D4 where D is the aperture diameter) when
standard matrix multiplication and inversion methods are employed. The control matrix may be computed
in a few hours to a few days on a fast workstation for an AO system with n = 103, but MCAO systems on
extremely large telescopes (ELT’s) may have n = 104−105. Relying upon improvements in processor speed and
parallel computing to cope with a factor of 103 − 106 increase in computation requirements is impractical, and
the development of new iterative algorithms and advanced numerical and mathematical techniques is highly
desirable to help develop and evaluate conceptual designs for MCAO on ELT’s.

For conventional AO systems with a single DM and WFS, significant improvements in computational ef-
ficiency are possible by exploiting the sparse structure of the deformable mirror influence matrices and at-
mospheric turbulence inverse covariance matrices appearing in these calculations. Sparse matrix techniques
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exploiting the sparse structure of the deformable mirror influence matrices have reduced the overall cost of
evaluating and applying the classical least-squares wavefront control matrix defined as the pseudoinverse of
the DM-to-WFS influence matrix, to O(n3/2). For MCAO systems employing multiple DM’s and WFS’s, the
cost of computing and applying the least-squares reconstructor is a much larger constant multiple of n3/2, and
the reconstructor suffers from WFS noise amplification for weakly sensed modes. Some sort of filtering of the
pseudoinverse like a truncated singular value decomposition (SVD) appears necessary, but this cancels out the
computational advantages of the sparse techniques. Optimum results can be achieved using a minimum variance
estimator that includes a regularization term based upon the second-order statistics of atmospheric turbulence
and WFS measurement noise.6, 7

Sparse matrix techniques have successfully been applied to the MCAO minimum variance reconstructor, and
have reduced the overall computations to O(n3/2) using a small adjustment of the turbulence statistics so that
the regularization term appearing in the optimal estimator is sparse.9 For extreme adaptive optics (ExAO)
systems (ultra-high-contrast AO system using a single very high-order DM and WFS), a minimum variance
reconstructor based on an iterative multigrid (multiresolution) method scaling as n log n has also been shown to
be very effective,10 and a Fourier transform recontructor scaling as n log n has also been proposed.11 This last
method directly inverts the phase-to-WFS influence matrix in the Fourier domain using an extension method,
but suffers from noise amplification.

In this paper, we address the mathematical and computational issues for MCAO systems (in particular the
dramatic amount of fill-in occuring in the Cholesky factorizations9 due to the long-range cross-coupling between
layers), and report on new ideas for fast and efficient iterative algorithmic approaches based on combined sparse
matrix and multigrid techniques that scale in overall computational complexity and real time implementation
as O(n3/2) with a smaller constant multiply. In addition, storage requirements are much smaller. The basic
approach is the conjugate gradient method with a multigrid preconditioner to speed up convergence, and a
layer-oriented (block) symmetric Gauss-Seidel smoother inspired by the recent layer-oriented control algorithms
for MCAO.12–15

2. PROBLEM STATEMENT
A schematic MCAO system is illustrated in Fig.1. In this system, the WFS’s are optically conjugate to the
telescope’s primary mirror and the DM’s to different altitudes za

m in the atmosphere. The WFS’s collect light
from several natural and/or laser guide stars located within the FoV at an altitude zg ≤ ∞. Turbulent layers
are located at distinct ranges zϕ

l . Fig.1 illustrates the LGS case with zg finite.
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Figure 1. Schematic MCAO system.



Minimum variance wavefront reconstructors are now favored for MCAO.16 For the most general case of either
a natural guide star (NGS) or a laser guide star (LGS) MCAO system with M DM’s, H high-order WFS’s, T
full-aperture tip/tilt WFS’s (applies only to the LGS case) and L atmospheric layers, with N ≥ L ≥M , where
N = H + T is the total number of WFS’s, these reconstructors are block matrix systems of the form

â = R
(
s
s̃

)
, R = (Rmn)1≤m≤M

1≤n≤N
, (2.1)

where â, s and s̃ are concatanations of respectively M,H and T subvectors corresponding to the estimated
actuator commands am (1 ≤ m ≤M), high-order sh (1 ≤ h ≤ H) and full-aperture tip/tilt s̃t (1 ≤ t ≤ T ) WFS
measurements. The beam print at layer l in direction θn together with the metapupil are shown in Fig.2.

hl θnγlD
γl x

Beam print

Metapupil

Figure 2. Metapupil and beam print. x is the pupil-plane coordinate, γl = 1 − hl/zg where hl and zg are respectively
layer l and LGS altitudes, with zg = ∞ for the NGS case.

For open-loop wavefront sensing, the measurement vector is modeled as(
s
s̃

)
= G ϕ+

(
η
η̃

)
, G def=

(
(I − P )G

G̃

)
, (2.2)

where ϕ, η and η̃ are concatenations of respectively L, H and T subvectors corresponding to the true turbulence
profile ϕl (1 ≤ l ≤ L), the high-order ηh (1 ≤ h ≤ H) and tip-tilt ηt (1 ≤ t ≤ T ) WFS measurement noise,
assumed to have zero mean and finite second-order statistics. P is a block diagonal orthogonal tip-tilt projector
(tilt removal operator) with respect to the high-order WFS’s inverse covariance matrix C−1 =

〈
ηηT

〉−1 (applies
only to the LGS case):

P = Diag (Ph)1≤h≤H ,

Ph = Kh

(
KT

h C
−1
h Kh

)−1
KT

h C
−1
h ,

PT
h = C−1

h Ph Ch (orthogonality) ,

(2.3)

where Ch =
〈
ηhη

T
h

〉
is the diagonal noise covariance matrix of high-order WFS h, and Kh is a rank 2 constant

matrix (corresponding to the tip and tilt modes) whose number of rows is equal to the number of sensor h grid
points.

(
KT

h C
−1
h Kh

)
is thus a 2 × 2 matrix and P is a low rank matrix (rank(P ) = 2H) compared to the total

number of high-order sensor grid points (number of rows of P ). The phase-to-WFS influence matrices G and
G̃ have the block matrix representation:

G = (ΓhH
ϕ
hl)1≤h≤H

1≤l≤L
, G̃ =

(
Γ̃tH̃

ϕ
tl

)
1≤t≤T
1≤l≤L

. (2.4)



In our computations Γh is a second-order finite difference (FD) approximation of the gradient operator whose
stencil depends on the high-order WFS’s geometry, and Γ̃t is the full-aperture tip-tilt projector for NGS WFS t
(rank(Γ̃t) = 2). For NGS MCAO systems, P and G̃ are null matrices, and s̃, η̃ null vectors. To compute phase
values at arbitrary coordinates intersecting rays from direction θn, i.e. at (γlx+ θx

nhl, γly+ θy
nhl) for layer l, we

use the interpolation formula
uI(x, y) =

∑
i

ei(x, y)ui , (2.5)

where ei(x, y) is the influence function associated with grid point i. We are using here bilinear splines.17 Using
a column or row grid point ordering scheme, equation (2.5) can be rewritten in matrix form

uI = Hu . (2.6)

where uI indicates interpolated quantity and the columns of the interpolation matrix H are the influence
functions ei(x, y). In our context, we denote by

ϕI
nl = Hϕ

nlϕl , (2.7)

the interpolated phase vector at layer l in direction θn. For laser guide stars at altitude zg, γl = (1 − hl/zg)
(beam reduction if zg < ∞). Note also that Hϕ

n1 = I since layer 1 is at ground level and therefore no shift or
beam reduction is needed. Figure 3 is a schematic illustrating a typical geometry using influence functions.

WFS
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DM

Turbulent ϕ

Beam from GS
Beam from Science FoV

Figure 3. Typical geometry using influence functions.

The minimum variance reconstructor minimizes
〈‖ε‖2

〉
where 〈·〉 indicates averaging over turbulence and noise

statistics, and ‖ε‖2 is the normalized aperture-plane, piston removed mean square wavefront error (mse) (overall
measure of performance) remaining after the estimated commands â have been applied to the DM’s, averaged
over N observation directions within the FoV (N ≥ N) with weights {ωn}1≤n≤N :

‖ε‖2 def= εTWε / (Hϕϕ)TW(Hϕϕ) , (2.8)

where ε is a concatanation of N subvectors εn corresponding to the different observation directions. The
weighting matrix W = Diag (ωnW )1≤n≤N accounts for aperture edge effects to obtain a more accurate residual
wavefront variance, and must define a positive definite metric found by setting the norm squared of any aperture-
plane vector u, ‖u‖2

W = uTWu, equal to norm squared of the corresponding continuous function as given by
(2.5):

‖u‖2
W =

∫
dxdyA(x, y)

[
uI(x, y) −

∫
dx′dy′A(x′, y′)uI(x′, y′)

]2
, (2.9)



A(x, y) being the normalized aperture function (
∫ A(x, y)dxdy = 1). The entries of W are then easily identified

as
W = W0 − v1vT1 , (sparse + low rank)

(W0)ij =
∫
dxdyA(x, y)ei(x, y)ej(x, y) ,

(v1)i =
∫
dxdyA(x, y)ei(x, y) .

(2.10)

The overall weighting matrix W may thus be decomposed as a sparse plus low-rank matrix:

W = W0 −W1WT
1 ,

W0 = Diag (ωnW0)1≤n≤N ,

W1 = Diag
(
ω

1/2
n v1

)
1≤n≤N

.

(2.11)

The pupil-plane residual piston-removed wavefront εn in direction n is given by

εn = (Hϕ
nl)1≤l≤L

ϕ − (Ha
nm)1≤m≤M â

=
∑L

l=1 ϕ
I
nl −

∑M
m=1 â

I
nm ,

(2.12)

where Ha
nm is the interpolation matrix for DM m in direction θn, whose columns are the actuator influence

functions eai (x) associated with each grid point i of DM m at altitude hm, evaluated at γm x + θn hm. The
actuator influence function eai (x) models the response of the ith actuator of DM m to a unit command.

The minimum variance reconstructor can be decomposed as

R = F E . (2.13)

The estimated DM commands â can then be computed in two steps as follows:

ϕ̂ = E

(
s
s̃

)
, â = Fϕ̂ , E = (Eln) 1≤l≤L

1≤n≤N
, F = (Fml)1≤m≤M

1≤l≤L
. (2.14)

The estimation matrix E applied to slope measurements provides an estimate ϕ̂ of the true turbulence profile
ϕ, and the fitting matrix F applied to ϕ̂ provides a best fit of the actuator commands â.7

3. MINIMUM VARIANCE ESTIMATION MATRIX

The minimum variance estimation (MVE) matrix E is formally given by

E = B−1 GT C−1 , C−1 = Diag(C−1, C̃
−1

) ,

B = GT C−1 G + L−1 , L−1 = Diag
(L−1

l

)
1≤l≤L

,
(3.1)

where C, C̃ are the diagonal sensor noise covariance matrices corresponding respectively to the high-order and
full-aperture tip/tilt WFS’s, and L is the block diagonal atmospheric covariance matrix (different turbulent
layers are statistically independent). The first step of the estimation may be computed as(

u
ũ

)
= GTC−1

(
s
s̃

)
=

(
GTC−1(I − P )s

G̃
T
C̃

−1
s̃

)
, (3.2)

where G̃ and C̃ are low-rank matrices. The second and final step in the evaluation, is to efficiently solve the
system

Bϕ̂ =
(
u
ũ

)
. (3.3)



To proceed with this computation, we decompose the matrix B into blocks corresponding to layers:

B = M− U UT + V V T ,
M = GTC−1G+ L−1 .

(3.4)

where U and V are low-rank matrices (rank(U) = 2H, rank(V ) = 2T ) with block representation

U = (Ul)1≤l≤L , Ul =
(
(Ghl)

T Qh

)
1≤h≤H

, Qh = C−1
h Kh

(
KT

h C
−1
h Kh

)−1/2
,

V = (Vl)1≤l≤L , Vl =
((
G̃tl

)T

C̃t

−1/2
)

1≤t≤T
.

(3.5)

The block decomposition of B then reads

Bll′ = Mll′ −
H∑

h=1

(Hϕ
hl)

T ΓT
h C

−1
h Ph ΓhH

ϕ
hl′ +

T∑
t=1

(
H̃ϕ

tl

)T

Γ̃t

T

C̃t

−1

Γ̃t H̃
ϕ
tl′ . (3.6)

3.1. Turbulence Covariance Matrix Approximation
Assuming that turbulence is stationary (i.e. the autocorrelation function depends only on the position difference
between the pairs of positions involved), the atmospheric phase covariance matrix for layer l, Ll, is a block
Toeplitz with Toeplitz blocks (BTTB) matrix. Unfortunately, there is no simple formula for the inverse of
BTTB matrices. Therefore, such matrices are often approximated by block circulant with circulant blocks
(BCCB) matrices. This approximation is equivalent to a periodic extension of the phase screen. Consequently,
on a finite grid, the BCCB approximation introduces a low-frequency error which will be neglegible provided
the computational domain is large compared to the telescope diameter.

The BCCB approximation allows us to easily invert the covariance matrix. Indeed, BCCB matrices are
diagonalized by the 2-D discrete Fourier transform (DFT), so we can write

Ll � F−1ΛlF , (3.7)

where F is the 2-D DFT matrix. A good approximation to L−1
l , which appears in the reconstructor matrix

(3.1), is then
L−1

l � Zl
def= F−1Λ−1

l F . (3.8)

This matrix is also BCCB. The diagonal entries of Λ come from the von Karman spatial power spectral density
(PSD) of the atmospheric refractive index fluctuations δn, with the universal −11/3 power law:

Λl(κ) =
〈|δn(κ)|2〉 = c2l /

[|κ|2 + 1/L2
0

]11/6
. (3.9)

Since Λl(κ) is positive, Zl is also symmetric positive definite (SPD). Here κ is the spatial frequency vector (in
rads/meter), L0 is the turbulence outer-scale, and cl is a constant defining the strength of layer l. For the case
of a Kolmogorov turbulence spectrum, L0 = ∞.

Zl is a non-sparse full rank matrix. As suggested in Ref.9, this matrix can be approximated by S2
l , a scaled

discrete Laplacian squared matrix (also known as biharmonic operator) with periodic boundary. Indeed, the
discrete Laplacian S has the Fourier representation

S = F−1diag(v̂)F ,
v̂ = 4

[
sin2(πκx∆x)/∆x2 + sin2(πκy∆y)/∆y2

] −→
∆x , ∆y→0

4π2(κ2
x + κ2

y) = 4π2|κ|2 . (3.10)

The advantage of this approximation is that the discrete Laplacian Sl = c′lS is sparse, enabling a sparse analog
of the estimation matrix. If we adopt this approximation, the blocks of M in the estimation matrix are given
by

Mll′ =
H∑

h=1

(Ghl)
T
C−1

h Ghl′ + S2
l δll′ , 1 ≤ l, l′ ≤ L . (3.11)



4. MINIMUM VARIANCE FITTING MATRIX

The minimum variance fitting (MVF) matrix is formally given by

F = A−1HaT WHϕ ,

A = HaT WHa + V V T + αI ,
(4.1)

where V is a low-rank matrix whose columns are independent vectors from the null space of HaT WHa,
including for each DM layer, piston and cancelling tip/tilt modes, which have no effect on the piston-removed
residual wavefront variance. α is a positive regularization parameter that must be included for MCAO systems
to account for the modes in the null space that are not known a priori. The first step of the fitting part of the
reconstructor can be computed easily from the sparse plus low-rank decomposition of the weighting matrix W.
To solve the fitting system, we proceed along the same lines as for the estimation part, i.e we decompose A into
layered blocks:

A = M− U UT + V V T ,

M = HaT W0H
a + αI ,

U = HaT W1 = (Um n)1≤m≤M

1≤n≤N

, Um n = (Ha
n m)T ω1/2

n v1 ,

V = (Vm)1≤m≤M ,

(4.2)

where rank(V ) = 2 (piston, tip-tilt), rank(U) = N . The layered decomposition of A then reads

Al l′ = Ml l′ −
∑N

n=1 Ul n

(
Ul′ n

)T + VlV
T
l′ = Ml l′ −

∑N
n=1

[(
Ha

n l

)T
ωn v1

] [
vT1 H

a
n l′
]

+ VlV
T
l′ ,

Ml l′ =
∑N

n=1

(
Ha

n l

)T
ωnW0H

a
n l′ + αIlδl l′ .

(4.3)

5. MG LAYER-ORIENTED PCG

From the above discussion, both MVE and MVF matrix systems require the solution of symmetric positive
definite (SPD) block matrix systems of generic form

Ax = b , (5.1)

where x is a concatenated vector whose support is either the set of atmospheric or DM layers. In both cases,
the matrix A can be represented in the form :

A = M− U UT + V V T = M−U VT ,

U = (U V ) , V = (U − V ) .
(5.2)

where U and V are low-rank full matrices. In order to solve (5.1), we use the Sherman-Morrison-Woodbury
formula to invert low-rank perturbations to a matrix. The formula (also known as matrix inversion lemma)
reads: (M−U VT

)−1
= M−1 + M−1 U (I − VT M−1 U)−1 (M−1 V)T . (5.3)

Note that rank(I−VT M−1 U) = rank(U) + rank(V ). The problem is thus reduced to solving systems involving
M. For natural guide star (NGS) MCAO systems, U and V are null matrices for the estimation step. A
simplified (non-block) version for the single-layer case has already been solved efficiently at a cost of O(n log n)
using a multigrid preconditioned conjugate gradient method.10 We propose to develop block extensions for the
case of multiple layers.

The conjugate gradient (CG) method18 is an iterative scheme for solving SPD linear systems (5.1). Starting
with x0 = 0, CG generates polynomial approximates xν = Pν(A)b to x∗ = A−1b. The polynomials Pν are
optimal in the sense that they minimize ‖eν‖2

A where eν = xν − x∗ and ‖eν‖2
A = eTνAeν . If A has q distinct

eigenvalues, CG is guaranteed to converge to the exact solution x∗ in at most q iterations, and it is “matrix



free” in the sense that it does not require explicit storage of the matrix A. Each iteration of CG requires
one vector-matrix multiply z = Av. In AO applications, A is very poorly conditioned, and this leads to very
slow convergence of CG when applied directly to (5.1). Therefore, the required number of iterations may be
unacceptably high. Preconditioning18 refers to a technique to speed up the convergence of iterative methods.
A preconditioner A′ is an SPD approximation of A such that cond(A′−1

A) � cond(A), i.e. A′−1
A has a more

desirable eigenvalue structure (clustering of the eigenvalues and/or low condition number) leading to rapid
convergence of CG. The preconditioned conjugate gradient (PCG) algorithm solves the equivalent system

A′−1
Ax = A′−1

b . (5.4)

Application of the preconditioner requires the computation of vector-matrix multiplies of the form u = A′−1
v.

The dominant costs of our PCG algorithm are the application of the preconditioner and vector-matrix multiplies
involving coefficient matrix A.18 We propose a multigrid algorithm to implement this preconditioning step.

5.1. The Multigrid Preconditioner

Multigrid (MG) methods19 are extremely effective for solving strongly elliptic partial differential equations
(PDE’s) like the Laplace or biharmonic equations. The estimation matrix (3.11) falls into this class, and
MG has been demonstrated to be very effective to solve (5.1) for ExAO systems.10 MG is a multiresolution
method. The key idea of a 2-grid scheme is to apply an iterative method (smoother) with fast convergence
for high frequencies, project the (low-frequency) error onto a coarser grid (restriction), solve the system on the
coarse grid, project back the coarse grid solution error onto the fine grid (interpolation), update the solution on
the fine grid and reapply the smoother to get rid of the new high-frequencies introduced. Multigrid methods
are a recursive application of the 2-grid idea. To solve A′u = v, MG requires the following components:

(i) A nested sequence of grids where eh = A−1
h rh is defined.

(ii) Restriction and interpolation operators (transpose of each other to preserve symmetry for CG).

(iii) A smoother: a stationary iterative method (characterized by an iteration matrix) which rapidly damps
out high frequencies of the residual at each grid level.

A typical MG V-cycle can be found in Ref.19.

5.2. The layer-oriented Symmetric Gauss-Seidel Smoother

The recent “layer-oriented” control algorithms for MCAO12–15 suggest to use a layer-oriented preconditioner.
The layer-oriented approach uses WFS’s conjugated to the DM’s instead of to the entrance pupil, and an optical
scheme to combine the signals from all guide stars. This has the effect of diminishing the cross-coupling of the
reconstructor, such that each WFS can control its corresponding DM directly. It is argued that such systems
may be less complex and less demanding in terms of computation.

In our computational approach, the first step in the estimation matrix E (i.e GTC−1) numerically combines
the measurements from multiple WFS’s in the same way as Ragazzoni’s optical scheme with pyramid wavefront
sensors. Therefore, we propose a layer-oriented (block) symmetric Gauss-Seidel (SGS) iteration as a smoother
for MG. The iteration is based on the following partitioning of A:

A = AD −AL −AU , (5.5)

where AD, AL and AU are block matrices assembled from the diagonal, lower and upper blocks of A respectively.
The SGS iteration reads

x(2k−1) = (AD +AL)−1
y(2k−2) , x(2k) = (AD +AU)−1

y(2k−1) ,

y(2k−2) def= b−AUx
(2k−2) , y(2k−1) def= b−ALx

(2k−1) .
(5.6)



For layer l (1 ≤ l ≤ L), these read

y
(2k−2)
L = b

(2k−2)
L , y

(2k−2)
l = bl −

∑L
l′=l+1Al l′x

(2k−2)
l′ ,

y
(2k−1)
1 = b

(2k−1)
1 , y

(2k−1)
l = bl −

∑l−1
l′=1Al l′x

(2k−1)
l′ .

(5.7)

Note that the iteration preserves cross-coupling between layers and can be implemented using back-substitutions:

x
(2k−1)
l = A−1

ll

[
y
(2k−2)
l −∑l−1

l′=1All′ x
(2k−1)
l′

]
,

x
(2k)
l = A−1

ll

[
y
(2k−1)
l −∑L

l′=l+1All′ x
(2k)
l′

]
,

(5.8)

which requires inversion of only diagonal blocks

All = Mll − Ul U
T
l + Vl V

T
l , 1 ≤ l ≤ L . (5.9)

This is done again using the matrix inversion lemma (5.3) implemented with Cholesky factorizations of the
diagonal blocks Mll (complete or incomplete) with much less fill-in than factorization of the full matrix M since
off-diagonal blocks have been eliminated. The computational cost and storage of the Cholesky factorizations
scale as the number of layers times 3/2 power of the number of grid points per layer.

6. FITTING STEP

The basic approach for the fitting step is incomplete Cholesky-preconditioned CG.18 The incomplete Cholesky
factorization is applied to the sparse component M of the fitting matrix, producing an approximate factorization
which has the same sparsity pattern as the upper triangular part of M. Both storage and cost per CG iteration
for this step scale as O(n). Fast convergence (see Fig.5) implies overall cost of fitting is O(n).

7. NUMERICAL SIMULATION RESULTS

We have arrived at a general framework for minimum variance reconstructors, with a variety of options for spe-
cial cases. The basic approach for the estimation step is the multigrid-preconditioned CG with a layer-oriented
(block) SGS smoothing. Using a sparse representation for the turbulence inverse covariance matrix, diagonal
blocks of the SGS smoother can be inverted using a symmetric approximate minimum degree (SYMAMD)
permutation20 prior to Cholesky factorization to avoid fill-in. For the fitting step, the basic approach is in-
complete Cholesky-preconditioned CG.18 Low rank perturbations for LGS and tip-tilt NGS measurements are
easily accounted for using the matrix inversion lemma. Exact representation of the turbulence statistics requires
an inner iterative solver like multigrid to invert the diagonal blocks Mjj , which greatly increases the overall
computational cost.

Figure 4 shows typical convergence results for the estimation step for telescope diameters equal to 32m, 16m
and 8m. We consider the following 6-layer atmospheric profile obtained using generalized SCIDAR measurements
at Cerro Pachon, Chile:

Layer 1 2 3 4 5 6

Altitude (m) 0 2580 5160 7730 12890 15460

Relative weight 0.652 0.172 0.055 0.025 0.074 0.022

The MCAO system under consideration has N = 5 NGS’s at the edges and center of a FoV of diameter 100
arcsec. We are considering an array of 5 × 5 observation directions partioning the FoV. The weights ωn of the
weighting matrix W in (2.8) have been chosen each equal to 1/N = 1/25. Our WFS sampling is at half phase
screen resolution. The estimation error norm averaged over the FoV has been computed as

‖εest‖2 def= εTestWεest
/

(Hϕϕ)TW(Hϕϕ) ,

εest = Hϕ (ϕ̂− ϕ) .
(7.1)



Comparison with direct matrix inversion has been made using the following error metric:

‖εex‖2 def= εTexWεex
/

(Hϕϕ̂ex)TW(Hϕϕ̂ex) ,

εex = Hϕ (ϕ̂− ϕ̂ex) .
(7.2)

Finally, the rms estimation error averaged over the Fov displayed in the lower right panel of Figure 4 has been
computed as

ξest =

(
N∑

n=1

ωn

(
Hϕϕ̂−Hϕϕ

)2
n

/ N∑
n=1

ωn ‖ (Hϕϕ
)
n
‖2

)1/2

, (7.3)

where component-wise operation has to be understood for the square appearing in the numerator and the overall
square root. We used 1 V-cycle/CG iteration and 1 SGS iteration/grid level. r0 is equal to 25cm and the phase
screens resolution is ∆x = r0. We used phase screens twice the size of the telescope diameter D, i.e. 256× 256,
128×128, and 64×64 for the D=32m, 16m, and 8m cases respectively. The table below summarizes the number
of grid points/phase screen, subapertures/WFS and actuators/DM for the different cases considered:

D (m) #grid points/phase screen #subapertures/WFS #actuators/DM

8 64 × 64 220 276

16 128 × 128 832 932

32 256 × 256 3208 3408

Figure 5 compares convergence results for the fitting step as the number of DM’s varies from 1 to 3. In the
3-DM configuration, DM’s are conjugated to 0m, 5160m, and 10320m; in the 2-DM case, conjugation altitudes
are 0m and 2580m; in the single-DM case, conjugation altitude is 0m. All DM’s are at half the phase screens
resolution. The lower right pannel of Figure 5 diplays the residual error after 2 CG fitting iterations for the
3-DM configuration as a function of CG estimation iterations.
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Figure 4. Minimum variance estimation for the Cerro-Pachon 6-layer profile, telescopes diameters equal to 32m, 16m
and 8m. 5 WFSs’ using 5 NGS’s at the edges and center of a FoV of diameter 100 arcsec, 1 V-cycle/CG iteration, 1 SGS
iteration/grid level, SNR = 20, r0 = 25 cm, ∆x = r0.
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Figure 5. Minimum variance fitting for the same system as in Fig.4 with 3 different DM configurations. 20 CG estimation
iterations were taken before starting the fitting step. Averaging over an array of 5×5 observation directions partitioning
a FoV of diameter 100 arcsec. Incomplete Cholesky preconditioning, regularization parameter α = 10−5, SNR = 20,
r0 = 25 cm, ∆x = r0.

8. CONCLUSIONS

We have developed efficient layer-oriented multigrid wavefront reconstruction algorithms for open-loop multi-
conjugate adaptive optics systems on 32m, 16m and 8m telescopes. For the estimation step, the basic approach
is the conjugate gradient method with a multigrid preconditioner to speed up convergence, and a layer-oriented
(block) symmetric Gauss-Seidel smoother. Using a sparse representation for the turbulence inverse covariance
matrix, diagonal blocks of the SGS smoother can be inverted using a symmetric approximate minimum degree
(SYMAMD) permutation prior to Cholesky factorization to avoid fill-in. For the fitting step, the basic approach
is incomplete Cholesky-preconditioned CG. Low rank perturbations for LGS and tip-tilt NGS measurements
are easily accounted for using the matrix inversion lemma.
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