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Summary: For surveys of physical parameters in objects where a high degree of axisym-
metry is expected, at least 16 objects should be measured with adequate S/N in order to
derive a robust spatial behavior such as monotonic radial variations in galaxy disks. If one
is looking for more complex spatial behavior, like breaks in the rotation curves or gradi-
ents in the spatial distribution, the required sample size may need to be several times larger.

In studies where multiplexing allows get a large sample in one observation, it may be
important to establish the minimum number of objects needed in a sample to derive a
robust behavior in a distribution. For example, several MCAO science cases emphasize
the multiplexing gain of the larger corrected �eld allowed by the uniform PSF. In the text
below we determine quantitatively what minimum sample sizes are needed to determine
various radial behavior, e.g. a monotonic change and a gradient with one/two breaks.

Galaxies generally present a fair degree of axisymmetry in their properties. When it
is appropriate to average these azimuthally { for example to determine their abundance
radial distributions or rotation curves {, one can explore their radial behavior. Sampling
size may become an issue. For example, how many H ii regions are required to derive the
radial distribution of a key physical parameter (e.g. the O/H abundance gradient) in a
galaxy within a given precision? In the simplest case where a monotonic behavior can be
assumed, one �ts the radial distribution with a straight line (Kreysig 1988)

y = a+ bx (1)

If we admit a gaussian distribution for the abundance variation in y,
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For most galaxies, measurements of O/H abundances based on standard empirical cali-
brations give s2xy � 0:1 dex (Dutil & Roy 1999).

We assume that the spatial distribution of H ii regions is uniform as a function of
galactocentric radius. This is an optimistic view since most galaxies do not display such
a convenient distribution, even in the absence of a bar or of a ring which can modify the
radial distribution of massive star formation (Hodge & Kennicutt 1983). However, it may
be argued that a careful observer may achieve a fairly uniform sampling by choosing the
H ii regions appropriately. In addition, the equations above also suppose that all regions
have the same weight. The di�erent weighting schemes (based on surface brightness, signal
to noise ratio or confusion limit) diminish the e�ective number of H ii regions below the
real size of the sample while reducing the value of s2xy, and behave di�erently against
selection e�ects.

With a uniform spatial distribution of points between 0 and �x,X
x = xn = �xn=2 and

X
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xn=3: (7)

This leads to
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Replacing these values in equation 2, we obtain:
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where �a is the uncertainty on the extrapolated central abundance. This uncertainty is
approximately twice as large as the uncertainty on the mean abundance level �y=

p
n;

this is caused by the contribution of the uncertainty on the slope to the extrapolated
central abundance. This large contribution (3=n) is due to the fact that the slope is
strongly weighted by the extremum points which are few, by de�nition; thus more points
are needed to reach a pre-de�ned level of precision. Therefore, four times as many points
are required to infer the central abundance compared to the mean abundance level for
a given error. Using this approach, we derive a similar expression for the slope of the
gradient:
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One may also search for breaks in the radial behavior of galaxy parameters such as
extinction or abundances. For radial distributions of chemical abundances, such breaks
are diÆcult to ascertain because of the non-unique relation between abundances and the
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line ratio indicators (Henry & Howard 1995; Kennicutt & Garnett 1996). Breaks in the
slope of abundance gradients are predicted for disk galaxies with young bars (<500 Myr),
where the radial 
ows of the gas across the disk have not yet had the time to homogenize
the abundances throughout the disk (Friedli, Benz & Kennicutt 1994; Friedli & Benz
1995); some evidence for breaks exists for a few barred galaxies (Martin & Roy 1995; Roy
& Walsh 1997).

Searching for a break is equivalent of looking for a variation of the gradient between
two parts of the radial distribution. In the simplest case of the break occurring in the
middle of the radial distribution, half of the points are measured on each half of the radial
range (�x=2). The mean abundance level has to be conserved either with a break or with
uniform gradient slope, and this on each side of the break. For consistency, the two slopes
must lead to the same abundance in the middle of the disk, and we have (see Figure 2)
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which reduces to
b1 + b2 = 2 b; (12)

where b1 is the slope of the �rst part of the distribution and b2 is the slope of the second
section. In the case where b2 = 0, the di�erence between the two gradients is equal to
twice the initial slope. By adding the variance �2

b1
and �2

b2
, we �nd the variance to be

used for the test:
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Expressed in term of signal to noise ratio, this expression translates into:
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Re-doing the calculation only to extract the slope of the gradient leads to:
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In order to detect a break in the slope of the gradient, one needs about four times the
number of data points required to establish solely the value of the global gradient. Ex-
tending this discussion to two breaks in the slope, e.g. two strong gradients separated
by a 
attened region as predicted by some evolutionary codes of barred galaxies (Friedli,
Kennicutt & Benz 1994, Friedli & Benz 1995), we derive the following equation:
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About 13.5 times as many data points are needed to detect a pattern of triple slope as
for measuring the mean global gradient!

A similar analysis can be done for the comparison of mean abundance levels at a given
galactocentric radius. The uncertainty on the local mean abundance is estimated by:

Var[y(x0)] = Var[a + bx0] (17)
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When comparing abundance levels referring to the middle of a galaxy disk (�x=2), this
equation reduces to
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n

(18)

Compared with equation 9, this shows that for a given uncertainty, it is much easier to
establish the abundance in the middle of the disk than the extrapolated central abundance,
since the deduced abundance level is no longer dependent on the estimation of the slope.

As example, for a typical Sb spiral galaxy with �x = 15 kpc, b = �0:02 dex/kpc

and
q
s2xy = 0:1, one needs at least 12 H ii regions in order to measure a slope at the 3�

level, and 16 regions to infer the central abundance with a precision better than �0.05
dex. For the same galaxy, one would need at least 48 data points to detect a break, and
162 to detect a double break in the radial distribution. However no more than four well
distributed points are required to derive the mean abundance level with a precision of
0.05 dex. These results are consistent with those of Zaritsky et al. (1994).
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