
ICD 18: World Coordinate Systems Page 1

ICD 18 - The Gemini World Coordinate System

Steven Beard
20 November 1998

This document provides a brief overview of the World Coordinate System
used by Gemini.

1.0 Introduction

1.1 Acronyms & Abbreviations

EPICS Experimental Physics and Industrial Control System
ICS Instrument Control System
IOC Input Output Controller
TCS Telescope Control System
WCS World Coordinate System

1.2 References

(1) TN-PS-G0045, "Astronomical Coordinate Frames I: Astrometry" (tcs_ptw_008)
(2) TN-C-G0070, "The Flow of WCS Information through a Gemini ICS" (cics_smb_042)
(3) TN-PS-G0071, "Astronomical Coordinate Frames II: Quick Look Support"

(tcs_ptw_009)

2.0 World Coordinate Systems for Dummies

The following text is taken from an email message and some example code which was circulated
to interested parties on 20 November 1998. The reader should consult document (1) for a more
thorough description of the use of World Coordinates.

Pat Wallace has explained to me the theory behind art of World Coordinate Systems, and I think
I now have a basic understanding of how an imaging instrument can generate the World
Coordinate System header information it needs to provide. The reference documents give all the
details. I found these documents hard to digest at first because they contain so much information,
but Pat has pointed me at the salient points most useful to a Gemini instrument controller
developer. The most useful part of these documents as far as an instrument programmer is
concerned is the sky imager example in TN-PS-G0045, section 5.2. This example provides
everything an imaging Gemini instrument needs. I was confused by this example when I first
saw it because it contains code designed to run under Unix, so much of the code shown is
devoted to simulating the TCS time system and WCS context.

Gemini
Controls
Group
Interface
Controls
Document

ICD 18: World Coordinate Systems Page 2

I have adapted this example, with Pat's help, to show how WCS information can be obtained on
an EPICS IOC. You will find this example later in this document. The example consists of two
functions:

wcsCalibrate - Simulates a calibration measurement by loading some arrays full of
numbers, then uses those numbers to obtain an (i,j) to (x,y) fit.

 In practice someone would actually calibrate an instrument and store

these lists of numbers into a file. (See the comments in the code for
details).

 It is this calibration that makes the example valid for any imager,

regardless of how many reflections, rotations, magnifications or
distortions it makes.

wcsTest - Gets the current TCS context and the (i,j) to (x,y) fit and calculates the WCS

header items.

The example assumes that you have a genSub record executing regularly in the background that
reads the context information from the TCS. Section 3.2 of TN-PS-G0045 explains how to do
this. I recommend one change to this example. I would enhance the genSub code to look like
this:

 #include "alarm.h"

 long updateAstCtx(struct gensubRecord *pgsub)
 {
 if (pgsub->sevr != ALARM_INVALID)
 {
 (void) astSetctx (pgsub->a);
 }
 else
 {
 printErr ("ERROR - TCS disconnected");
 }
 }

That way you get an error message if the TCS database is not available. In practice you may
want to replace the "printErr" with your own error reporting method. I also arranged to have the
message appear only once when the first disconnection is noticed.

It should be possible to extend the WCS calculation to spectrographs, but the details of how to do
this have not yet been decided. Pat tells me that Figure 1 in TN-PS-G0071 encapsulates the
situation for both imagers and spectrographs.

ICD 18: World Coordinate Systems Page 3

3.0 Example Code

/*
 * This file contains some code for testing the getting and setting of
 * World Coordinate System (WCS) information, as described in document
 * tcs_ptw_008, "World Coordinates, Part I: Astrometry". The code has
 * been adapted from the example given in section 5.2 of that paper.
 *
 * Simulated calls to obtain TCS context information have been replaced by
 * real TCS function calls.
 *
 * The code assumes that a TCS World Coordinate System context is available
 * and has been set elsewhere using astSetCtx(). In practise this is done
 * in a genSub record which grabs the WCS context from the TCS at regular
 * intervals. The TCS database needs to be up and running and accessible.
 *
 * Steven Beard, 18 November 1998.
 */

#include <vxWorks.h>
#include <stdio.h>
#include <stdlib.h>
#include <sysLib.h>
#include <taskLib.h>

#include "timeLib.h"
#include "slalib.h"
#include "astLib.h"

/* Define global constants */

#define NPOINTS 4 /* Number of measured points */
 /* (must be at least 3). */
#define MATRIXSIZE 6 /* Size of transformation matrix */
 /* (always 6). */

/* Define global variables */

double fpxy[NPOINTS][2]; /* Array of defined focal plane XY */
 /* coordinates. */
double pixij[NPOINTS][2]; /* Array of measured pixel IJ */
 /* coordinates (unbinned and unwindowed). */
double detij[NPOINTS][2]; /* Array of binned and windowed pixel IJ */
 /* coordinates corresponding to the same */
 /* points on the detector. */
double cij[MATRIXSIZE]; /* XY to IJ transformation matrix. */

/*
 * Function wcsCalibrate() defines a pixel coordinate (i,j) to (x,y)
 * transformation.
 *
 * In practise this will be done by executing the following steps:
 *
 * Step 1 - calibration
 *
 * For each calibration point, p

ICD 18: World Coordinate Systems Page 4

 * Command the TCS to put a star at position (x,y) in the focal plane,
 * (fpxy[p][0]), fpxy[p][1]).
 * Measure the position of that star on the detector in pixels (i,j),
 * (pixij[p][0], pixij[p][1]).
 * Next point (at least 3 points are needed).
 *
 * In this example the points are defined arbitrarily. In the real world
 * the (x,y) and (i,j) measurements will be stored in a file and read when
 * needed. 4 points are used merely as an example and a more reiable fit
 * would be obtained using more points. A fit such as this is valid for any
 * imaging instrument, not just the HRWFS.
 *
 * Step 2 - transform the (i,j) measurements to match the current
configuration
 *
 * It is assumed the calibration at step (1) will have been done with the
 * detector generating unbinned full frames. If the detector is
reconfigured
 * to bin the data or generate a smaller region of interest, the (i,j)
 * values need to be transformed to match the detector coordinates in the
 * new frame of reference.
 *
 * For example, if the detector is skipping the first "iskip" pixels and
 * binning the remaining pixels by a factor "ibin" each i measurement
 * becomes
 *
 * i_new = ((i_old - 0.5 - iskip) / ibin) + 0.5;
 *
 * Step 2 - fit
 *
 * Function astFitij() is used to generate an (i,j) to (x,y)
transformation.
 * This transformation will be valid as long as the parameters used for
 * steps (1) and (2) remain the same.
 *
 * If the detector is reprogrammed (e.g. different binning or window)
 * go back to step (2).
 * If the instrument is reconfigured (e.g. different camera used)
 * go back to step (1).
 *
 */

STATUS wcsCalibrate (void)
{
 int wcsStat; /* WCS status. */
 int p; /* Point counter. */

 int ibin, jbin; /* Detector i and j binning factors. */
 int iskip, jskip; /* Detector will skip this number of pixels */
 /* in i and j. */

 double pixis; /* x to i scale factor. */
 double pixjs; /* y to j scale factor. */
 double perp; /* Non-perpendicularity of i and j axes in */
 /* radians. */
 double orient; /* Orientation of (i,j) axes with respect to */
 /* (x,y) in radians. */

ICD 18: World Coordinate Systems Page 5

 /*
 * Step 1.
 *
 * Define an example of a set of calibration measurements, for
 * demonstration purposes.
 *
 * NOTE: In reality the points would be read from a file and counted,
 * with an end of file signifying the end of the list.
 */

 pixij[0][0] = 51.3;
 pixij[0][1] = 49.5;
 fpxy[0][0] = 19.15;
 fpxy[0][1] = 21.31;

 pixij[1][0] = 50.7;
 pixij[1][1] = 1227.8;
 fpxy[1][0] = -23.77;
 fpxy[1][1] = -13.95;

 pixij[2][0] = 2179.6;
 pixij[2][1] = 1230.4;
 fpxy[2][0] = 23.36;
 fpxy[2][1] = -22.26;

 pixij[3][0] = 2182.3;
 pixij[3][1] = 53.1;
 fpxy[3][0] = 28.08;
 fpxy[3][1] = 3.90;

 /*
 * Step 2.
 *
 * Transform the measurements using the current detector controller
 * configuration.
 */

 ibin = 1; /* Default values. */
 jbin = 1;
 iskip = 0;
 jskip = 0;

 printf ("Enter detector binning factors in i and j: ");
 scanf ("%d %d", &ibin, &jbin);

 if (ibin <= 0) ibin = 1;
 if (jbin <= 0) jbin = 1;

 printf ("Enter number of pixels detector skips in i and j: ");
 scanf ("%d %d", &iskip, &jskip);

 for (p=0; p<NPOINTS; p++)
 {
 detij[p][0] = ((pixij[p][0] - 0.5 - (double) iskip) /
 (double) ibin) + 0.5;

ICD 18: World Coordinate Systems Page 6

 detij[p][1] = ((pixij[p][1] - 0.5 - (double) jskip) /
 (double) jbin) + 0.5;
 }

 /*
 * Display the calibration points entered.
 */

 printf ("Calibration points:\n");
 printf ("i \tfpx \tfpy \tpixi \tpixj "
 "\tdeti \tdetj\n");

 for (p=0; p<NPOINTS; p++)
 {
 printf ("%d \t%f \t%f \t%f \t%f \t%f \t%f\n", p,
 fpxy[p][0], fpxy[p][1],
 pixij[p][0], pixij[p][1],
 detij[p][0], detij[p][1]);
 }

 /*
 * Define the (i,j) to (X,Y) transformation. The transformation is written
 * to matrix cij.
 */

 wcsStat = astFitij (NPOINTS, fpxy, detij, cij, &pixis, &pixjs,
 &perp, &orient);
 if (wcsStat != 0)
 {
 printErr ("astFitij: Failed to define (i,j) to (X,Y) transformation."
 " Status=%d\n", wcsStat);
 return (ERROR);
 }

 printf ("Best fit scale is %f X units per i pixel and "
 "%f Y units per j pixel\n", pixis, pixjs);
 printf ("i/j non-perpendicularity is %f radians.\n", perp);
 printf ("i/j is rotated by %f radians with respect to x/y axis.\n",
 orient);

 printf ("Cij matrix contains %f %f %f %f %f %f\n", cij[0], cij[1], cij[2],
 cij[3], cij[4], cij[5]);

 return (OK);
}

/*
 * Function wcsTest() generates FITS header values describing the current
World
 * Coordinate System. It assumes that function wcsCalibrate() has been
executed
 * and a (i,j) to (X,Y) transformation matrix has been defined in global
 * variable cij.
 */

STATUS wcsTest (void)
{

ICD 18: World Coordinate Systems Page 7

 int wcsStat; /* WCS status. */
 struct WCS_CTX ctx; /* World Coordinate System context. */
 struct WCS wcs; /* Basic TCS World Coordinate System. */
 struct WCS wcsij; /* World Coordinate System transformed */
 /* into detector frame of reference. */

 FRAMETYPE trackFrame; /* TCS track frame. */
 struct EPOCH trackEquinox; /* TCS track equinox. */

 double rawTimeStamp; /* Time stamp in Gemini raw time. */
 double timeTAI; /* International atomic time in secs. */
 double trackWavelength; /* Track wavelength in microns. */
 double rawTimeWcs; /* Gemini raw time at which WCS info */
 /* valid. */

 int chopState; /* Chop state. */

 char ctype1[81]; /* World Coordinate System projection */
 /* type for axis 1. */
 double crpix1; /* Pixel coordinate reference for */
 /* axis 1. */
 double crval1; /* World coordinate reference for */
 /* axis 1. */
 char ctype2[81]; /* World Coordinate System projection */
 /* type for axis 2. */
 double crpix2; /* Pixel coordinate reference for */
 /* axis 2. */
 double crval2; /* World coordinate reference for */
 /* axis 2. */
 double cd1_1; /* xi rotation/skew matrix element. */
 double cd1_2; /* xj rotation/skew matrix element. */
 double cd2_1; /* yi rotation/skew matrix element. */
 double cd2_2; /* yj rotation/skew matrix element. */
 char radecsys[81]; /* Type of RA/Dec (for celestial */
 /* coordinates). */
 double equinox; /* Epoch of mean equator & equinox */
 /* (celestial coords). */
 double mjdobs; /* Modified Julian Date. */

 /*
 * Get a timestamp for the World Coordinate System information.
 * This timestamp should be obtained close to the start of the observation
 */

 if (timeNow (&rawTimeStamp) != OK)
 {
 printErr ("Failed to get time stamp.\n");
 return (ERROR);
 }

 printf ("Gemini raw time = %f\n", rawTimeStamp);

 /*
 * Convert the start time into International Atomic Time (TAI).
 * This time will be used to generate the MJD-OBS field in the FITS
header.
 *

ICD 18: World Coordinate Systems Page 8

 * There is currently no internationally agreed standard defining the
 * timescale for MJD-OBS. TAI is used here because it is a sensible choice
 * and, in fact, was once specified in a draft standard in July 1996 that
 * was subsequently withdrawn.
 * Whatever timescale is specified here, it is important that it be
 * continuous across a leap second. Suitable alternatives are
 * Terrestrial Time (TT) and Universal Time 1 (UT1). UTC is NOT suitable.
 *
 * NOTE: Pat Wallace is checking this with the FITS committee.
 */

 if (timeThenD (rawTimeStamp, TAI, &timeTAI) != OK)
 {
 printErr ("Failed to convert time stamp to TAI.\n");
 return (ERROR);
 }

 printf ("TAI = %f\n", timeTAI);

 /*
 * Obtain the current TCS context from the locally stored copy.
 * This assumes that a TCS context has been obtained elsewhere and stored
 * using astSetCtx(), as described in section 3 of document tcs_ptw_008.
 */

 wcsStat = astGetctx (&ctx);
 if (wcsStat != 0)
 {
 printErr ("astGetctx: Failed to get current WCS context. Status=%d\n",
 wcsStat);
 return (ERROR);
 }

 /*
 * Set the required tracking frame, equinox and wavelength in microns to
 * sensible defaults. These parameters define the coordinate frame in
 * which you would like the WCS information to appear, and in practise it
 * makes sense to make them the same as the tracking frame, equinox and
 * wavelength the TCS is using. These numbers can be obtained by querying
 * the TCS Status Alarm Database from the EPICS SIR records described in
 * ICD 3.1/1.1.11.
 */

 trackFrame = FK5;
 trackEquinox.type = 'J'; /* NOTE: The data type is 'char'. */
 trackEquinox.year = 2000.0;
 trackWavelength = 0.5;

 /*
 * Set the chop state to which the WCS coordinate information refers.
 */

 chopState = 0; /* 0 means chop state A. */

 /*
 * Extract the current focal plane to sky WCS transformation from the TCS

ICD 18: World Coordinate Systems Page 9

 * context.
 *
 * NOTE: If an instrument needs more than one focal plane to sky
 * transformation (for example for different wavelengths or chop states)
 * this function will need to be called more than once.
 */

 wcsStat = astCtx2tr (ctx, trackFrame, trackEquinox, trackWavelength,
 chopState, &wcs, &rawTimeWcs);
 if (wcsStat != 0)
 {
 printErr ("Failed to get focal plane to sky WCS transformation. "
 "Status = %d\n", wcsStat);
 return (ERROR);
 }

 printf ("WCS information extracted from TCS context is valid at time
%f\n",
 rawTimeWcs);

 /*
 * Combine the (i,j) to (x,y) model, cij, and (x,y) to (RA,Dec) model,
wcs,
 * into a single (i,j) to (RA,Dec) model, wcsij.
 *
 * NOTE: If an instrument needs to apply further coordinate
transformations
 * they can be done here. (The exception is the simple binning of pixels
on
 * the detector, which is more easily done by changing the (i,j)
 * calibration measurements.
 */

 wcsStat = astXtndtr (cij, wcs, &wcsij);
 if (wcsStat != 0)
 {
 printErr ("astXtndtr: Failed to combine i-j to x-y and x-y to "
 "RA-Dec models. Status = %d\n", wcsStat);
 return (ERROR);
 }

 /*
 * Calculate the FITS header values.
 *
 * NOTE: The function astFITS can generate FITS header strings directly.
 * I am using astFITSv because the Gemini DHS requires WCS information to
 * be associated with data by means of attribute/value pairs. The name and
 * value of each attribute is defined using the dhsBdAttribAdd() function,
 * as described in ICD 3.
 */

 wcsStat = astFITSv (wcsij, trackFrame, trackEquinox, timeTAI,
 ctype1, &crpix1, &crval1,
 ctype2, &crpix2, &crval2,
 &cd1_1, &cd1_2, &cd2_1, &cd2_2,
 radecsys, &equinox, &mjdobs);
 if (wcsStat != 0)

ICD 18: World Coordinate Systems Page 10

 {
 printErr ("Failed to calculate FITS header. Status = %d\n", wcsStat);
 return (ERROR);
 }

 printf ("World Coordinate System Header\n");
 printf ("------------------------------\n");
 printf ("ctype1 = %s\n", ctype1);
 printf ("crpix1 = %f pixels\n", crpix1);
 printf ("crval1 = %f degrees = %f hours\n", crval1,
 (crval1 / (double) 15.0));
 printf ("ctype2 = %s\n", ctype2);
 printf ("crpix2 = %f pixels\n", crpix2);
 printf ("crval2 = %f degrees\n", crval2);
 printf ("cd1_1 = %f\n", cd1_1);
 printf ("cd1_2 = %f\n", cd1_2);
 printf ("cd2_1 = %f\n", cd2_1);
 printf ("cd2_2 = %f\n", cd2_2);
 printf ("radecsys = %s\n", radecsys);
 printf ("equinox = %f\n", equinox);
 printf ("mjd-obs = %f\n", mjdobs);

 return (OK);
}

