
Created: November 6, 1996
Modified: September 5, 1997 Saved: July 27, 1998

ICD 14 — Core Instrument Control System cics_smb_035/07 1 of 12

Gemini
Controls
Group
Interface
Control
Document

6
ICD 14 — Core Instrument Control
System

Steven Beard

ICD14/07 cics_smb_035/07

This document describes the interface between a Science Instrument Control
System and the CICS, i.e. it explains how an Instrument Control System can be
built using the CICS as a template.

CONTENTS

1.0 Introduction 2
1.1 Purpose 2
1.2 Scope 2
1.3 Applicable Documents 2
1.4 Abbreviations and Acronyms 4
1.5 Definitions 5
1.6 Stylistic Conventions 5

2.0 Overview 5
2.1 System Hardware Architecture 5
2.2 Communication Architecture 6
2.3 The Services Component of the Interface 7

3.0 Implementation 7
3.1 Use of the CICS in a Components Controller 7
3.2 Use of the CICS in a Detector Controller 10

Introduction

2 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

4.0 The Programmatic Interface 10

5.0 Debugging 10

6.0 Error, Alarm and Logging System 11

7.0 System Attributes 11

8.0 Development and Test Factors 11

9.0 APPENDIX — NIRI Case History 11

1.0 Introduction

1.1 Purpose

This Interface Control Document (ICD) describes how to build an Instrument Control Sys-
tem using the CICS as a template.

The intended audience for this document is:

• the reviewers of the CICS;

• the developers of Gemini science instruments;

• the developers of Gemini Detector Controllers;

• the developers of any system which uses the CICS as a template (e.g. the A&G, OIWFS,
HRWFS/AC or GAOS).

1.2 Scope

This document describes only how to use the template provided by the CICS. It does not lay
down the law on how an Instrument Control System should be constructed. Instrument
developers should consult ICD 13 [18] and Gemini Programming Standards [2] documents.

NOTE: This document is not intended to be stand-alone. It should be read in conjunction
with the “Core Instrument Control System — Introduction & Specification”, [21], the
“CICS — Architectural Design Document”, [22], the “CICS — Detailed Design Docu-
ment”, [26], and the “CICS User Guide”.

1.3 Applicable Documents

The following documents should also be consulted:

[1] SPE-C-G0037, Software Design Description, Gemini 8m Telescope Project.

[2] SPE-I-G0009, Software Programming Standards, Gemini 8m Telescopes Project.

[3] Telescopes Project.

[4] gscg.kkg.009, “ICD 1a — The System Command Interface”, Gemini 8m Telescopes
Project.

Introduction

ICD 14 — Core Instrument Control System cics_smb_035/07 3 of 12

6
[5] gscg.grp.024, “ICD 1b — The Baseline Attribute/Value Interface”, Gemini 8m Tele-

scopes Project.

[6] gscg.kkg.010, “ICD 2 — Systems Status and Alarm Interfaces”, Gemini 8m Tele-
scopes Project.

[7] dhs_pdr_icd3, “ICD 3 — Bulk Data Transfer”, Norman Hill & Severin Gaudet,
DAO.

[8] dhs_pdr_icd4, “ICD 4 — Logging Interface”, Norman Hill & Severin Gaudet, DAO.

[9] gscg.grp.010, “ICD 5 — Wavefront Sensing Information Interface”, Malcolm Stew-
art, Royal Observatory Edinburgh.

[10] cics_smb_017, “ICD 6 — ICS/TCS Direct Control Interface”, Steven Beard, Royal
Observatory Edinburgh.

[11] cics_smb_014, “ICD 7a — ICS Subsystem Interfaces”, Steven Beard, Steve Wampler
and Chris Mayer, Gemini 8m Telescopes Project.

[12] tcs_pbt_004, “ICD 7b — TCS Subsystem Interfaces”, Philip Taylor, Royal Green-
wich Observatory.

[13] gscg.grp.012, “ICD 8 — Non-Conforming ICS Interfaces”, Gemini 8m Telescopes
Project.

[14] gscg.grp.???, “ICD 9 — EPICS Time Bus Driver”, Phil Taylor, Royal Greenwich
Observatory.

[15] gscg.grp.020, “ICD 10 — EPICS Synchro Bus Driver”, Andrew Johnson, Royal
Greenwich Observatory.

[16] gscg.grp.021, “ICD 11 — Event Bus”, Magnus Paterson, Royal Observatory Edin-
burgh.

[17] gscg.grp.017, “ICD 12 — Gemini Interlock System”, Gemini 8m Telescopes Project.

[18] gscg.grp.???, “ICD 13 — Standard Controller”, Bret Goodrich & Andrew Johnson,
Gemini 8m Telescopes Project.

[19] gscg.grp.025, ICD 16 — The Parameter Definition Format, Steve Wampler, Gemini
8m Telescopes Project.

[20] ocs.kkg.031, “Sequence Command Specifications”, Kim Gillies, Shane Walker &
Steven Beard, NOAO/Gemini 8m Telescopes Project.

[21] cics_smb_002, “Core Instrument Control System — Introduction & Specification”,
Steven Beard, Royal Observatory Edinburgh.

[22] cics_smb_022, “CICS — Architectural Design Document”, Steven Beard, Royal
Observatory Edinburgh.

[23] cics_smb_033, “ICD 1.9.3/1.9.5 — Science Instrument to Detector Controller”, Ste-
ven Beard, Royal Observatory Edinburgh.

[24] cics_smb_038, “CICS User Guide”, Steven Beard, Royal Observatory Edinburgh.

[25] cics_smb_039, “CICS Project Glossary and References”, Steven Beard, Royal
Observatory Edinburgh.

[26] cics_smb_041, “CICS — Detailed Design Document”, Steven Beard, Royal Observ-
atory Edinburgh.

[27] ag_jms_001, “A&G Control System vis-a-vis Other Gemini Systems”, J.M.Stewart,
ROE.

[28] ag_jms_004, “Control of Wavefront Sensors”, J.M.Stewart, ROE.

Introduction

4 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

[29] niri_hty_001, “Near IR Imager (NIRI) - Architectural Design Document”, Hubert
Yamada, Institute for Astronomy, UNiversity of Hawaii, Honolulu.

[30] niri_hty_002, “Near IR Imager (NIRI) - Detailed Design Document”, Hubert
Yamada, Institute for Astronomy, UNiversity of Hawaii, Honolulu.

[31] WHT ADAM/EPICS INTERFACE, Version 0.2, Paul Martin, Chris Mayer, Phillip
Taylor, 27 July, 1994. Available from the authors.

[32] gscg.bdg.007.dsup, “Writing EPICS Device Support”, Bret Goodrich, Gemini 8m
Telescopes Project.

[33] EPICS Display Manager User’s Guide, Los Alamos National Laboratory.

[34] EPICS Archiving Reference Manual (DRAFT), Roger Cole, Los Alamos National
Laboratory. [N.B. This document is in preparation. The Gemini project has a draft
copy. Contact the author for up to date information].

[35] EPICS Channel Access Reference Manual, Jeffrey O. Hill, EPICS Group, Los Ala-
mos National Laboratory.

[36] EPICS Input/Output Controller Record Reference Manual, J.B. Anderson, M.R.
Kraimer, October, 1992.

[37] EPICS: IOC Application Developers Guide, Los Alamos National Laboratory.

[38] EPICS State Notation Language and Run-time Sequencer Users Guide, Andy Kozu-
bal, Los Alamos National Laboratory

[39] CAPFAST Electronic Circuit Design CAE User’s Manual, Phase Three Logic Inc..,
Beaverton, Oregon.

1.4 Abbreviations and Acronyms

A&G Acquisition and Guidance
AC Acquisition Camera
AO Adaptive Optics
CA Channel Access
CAD Command Action Directive
CAR Command Action Response
CC Components Controller
CICS Core Instrument Control System
CRS Cassegrain Rotator control System
DC Detector Controller
DHS Data Handling System
ECS Enclosure Control System
EPICS Experimental Physics and Industrial Control System
FITS Flexible Image Transport System
HRWFS High Resolution Wavefront Sensor
GAOS Gemini Adaptive Optics Subsystem
GBD Guidance and Beam Direction (part of the A&G)
GCS Gemini Control System
ICD Interface Control Document
ICS Instrument Control System
IOC Input Output Controller
IS Instrument Sequencer
LAN Local Area Network
M1 Primary Mirror
M2 Secondary Mirror

Overview

ICD 14 — Core Instrument Control System cics_smb_035/07 5 of 12

6
MCS Mount Control System
OCS Observatory Control System
OIWFS On Instrument Wavefront Sensor
PCS Primary mirror (M1) Control System
PDF Parameter Definition Format
SAD Status/Alarm Database
SCS Secondary mirror (M2) Control System
SDD Software Design Description.
SIR Status/Information Record (EPICS)
TBD To Be Decided
TCP/IP Transmission Control Protocol/Internet Protocol
TCS Telescope Control System
UDP/IP User Datagram Protocol/Internet Protocol
VSM Virtual System Mode
WAN Wide Area Network
WFS Wavefront Sensor

1.5 Definitions

VME A real-time system obeying the ANSI/IEEE 1014-1987 Versatile
Backplane Bus standard.

VxWorks The Real Time Operating system from Wind River

1.6 Stylistic Conventions

References to documents in Section 1.3, “Applicable Documents,” on page 2 are given like
this; [1].

Note that, unless otherwise specified, the term “Detector Controller” refers to the Detector
Controller software system.

2.0 Overview

An overview of the Gemini Control System is given in the Gemini Software Design Descrip-
tion, [1], and an overview of the structure of an Instrument Control System is given in the
introduction to the Core Instrument Control System (CICS), [21] and the CICS Architectural
Design, [22]. The detailed design of the CICS is described in the CICS Detailed Design [26].
An overview of the A&G and wavefront sensing systems is given in [27] and [28].

2.1 System Hardware Architecture

An Instrument Control System uses a VxWorks/VME based IOC using EPICS for internal
communications and control. Each ICS consists of one or more VxWorks systems support-
ing the Instrument Sequencer (IS) software, the Detector Controller (DC), and the Compo-
nents Controller (CC). A full description of the Gemini hardware architecture is contained in
ICD 13, [18].

In practice, the Instrument Sequencer and Components Controller will all run on the same
EPICS Input Output Controller (IOC), and the Detector Controller will be in a separate
EPICS IOC, as shown in Figure 1 on page 6. If the Gemini project chooses to use an existing
Detector Controller, rather than building one in-house, this might not have the same architec-

Overview

6 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

ture as shown in Figure 1. It will at least have to act like an EPICS channel access server at
the interface with the Control LAN in order to conform to this ICD.

If an instrument has an on-instrument wavefront sensor (OIWFS), the Components Control-
ler for this OIWFS will be installed on the instrument’s IOC but will not be controlled by the
Instrument Sequencer. Instead control will come from the A&G GBD sequencer on a sepa-
rate IOC, as shown in red on Figure 1. (Note that the Detector Controller for an OIWFS is
installed entirely on the A&G IOC). See [27], [28] and [9] for details.

The ICS ‘Instrument Sequencer’ software is responsible for managing the interfaces between
all the instrument systems and other Principal Systems (OCS, DHS and TCS). These inter-
faces are not covered by this ICD.

FIGURE 1. The Instrument Subsystem Command, Status and Alarm Hardware Architecture

2.2 Communication Architecture

The ICS systems communicate internally using EPICS Channel Access across a high per-
formance LAN (the Control LAN). Communications are established using UDP, but run
using TCP/IP.

2.2.1 ICS Context Diagram
See the CICS Architectural Design Document, [22].

2.2.2 ICS Events and Responses
See the CICS Architectural Design Document, [22].

VME CPU

Instrument IOC (EPICS) Detector IOC (EPICS)

Instrument

Instrument Control
Interface

Control LAN

Hardware

VME CPU

Detector

Detector Control
Interface

Hardware

VME CPU

A&G IOC (EPICS)

A&G

A&G Control
Interface

Hardware

Used for PWFS components
Control only.

Instrument components
+ OIWFS components

Implementation

ICD 14 — Core Instrument Control System cics_smb_035/07 7 of 12

6
2.3 The Services Component of the Interface

2.3.1 Communication Services and Protocols
All communication takes place using the EPICS Database Access or Channel Access Proto-
col [37]. Communication between separate EPICS boxes takes place by means of TCP/IP
messages communicated on the Local Area Network.

2.3.2 Host Support Services
N/A

2.3.3 Target Support Services
N/A

3.0 Implementation

The CICS has been designed to be a template (see [22] and [26]). It simulates the control of
hardware and has an arbitrary selection of components. The CICS needs to be adapted for the
requirements of each particular instrument, as described here.

To help with the integration of the CICS and a real instrument, comments preceded by the
string “ICD 14” have been included in the CICS source code, state notation language and
Capfast diagrams. Consulting the CICS Detailed Design, [26], and searching for the string
“ICD 14” should help identify the changes necessary for a particular instrument.

3.1 Use of the CICS in a Components Controller

The following steps are required to make use of the CICS in the Components Controller an
actual Instrument Control System:

1. The top level CICS Capfast schematics need to be modified to reflect the actual compo-
nents making up the instrument (rather than the arbitrary selection chosen for the CICS).

2. The top level CICS Capfast schematics also need to be modified to reflect the actual class
of each type of mechanism. For example, if the focus mechanism operates in discrete
steps rather than continuously, then the focus needs to be represented by the “one axis
discrete mechanism” (comp1d) symbol rather than the “one axis continuous mechanism”
(comp1c) symbol.

If the mechanism is of a class which does not yet exist in the CICS, then a new schematic
for that class needs to be developed (e.g. a three axis mechanism with two continuous
axes and one discrete axis could be described with a “comp3ccd” schematic). If new
classes of mechanism are developed these should be made available to other instrument
groups and provided to IGPO for incorporation into the CICS collection.

3. The CICS simulates motor control in its “motor.sch” schematic. This simulates a motor
by attempting to make the “actual” position stored in one EPICS record the same as the
“demand” position stored in another record. In a real instrument this schematic needs to
be replaced by an actual motor control schematic. If all motors are controlled in the same
way it might be sufficient just to replace this one schematic with a motor control data-
base. If the instrument uses different kinds of motor then it may be necessary to provide a
separate motor control database for each class of motor. A motor control database is
likely to contain the following:

— A stepper motor record (or a record designed for that particular kind of motor).

Implementation

8 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

— Records containing the actual and demand positions for the motor (if these are not
already available as part of the stepper motor control record).

— Records, such as the “Sequence”, “Scan” and “Wait” record, responsible for sequenc-
ing the motor when carrying out high level operations such as a datum search.

— Binary records connected to microswitches which detect the passage of particular ref-
erence points.

— If the mechanism has absolute encoders there may be records connected to those to
report the actual location of the motor.

In general, simple sequencing operations (such as moving the motor until a microswitch
is triggered) can be carried out in the motor control database. Complex operations involv-
ing the coordination of more than one motor may be better done in the EPICS state nota-
tion language (see next item).

Instrument groups are free to use the CICS mechanism simulator for simulating their
mechanisms while in “FULL” simulation mode.

4. The CICS requires any motor control database to have the following inputs and outputs:

Inputs

— Demand position in engineering units;

— Start/Stop operations;

— “Find datum” operation;

— Maximum velocity (optional).

Outputs

— Busy flag;

— Current position in engineering units;

— Current velocity (optional);

The CICS can get away without using the optional parameters. Some instruments may
need to return additional parameters (such as a movement status and message), and the
CICS can be adapted to handle these. See the NIRI case in SECTION XXXX.

5. The state notation language which controls the mechanisms may need to be altered to
reflect the actual inputs and outputs of the real mechanism. If the mechanism recognises
additional commands (in addition to “move”, “init” and “datum”) those commands need
to be added to the state notation language. See the NIRI case in SECTION XXXX for an
example.

6. The state notation language associated with a particular class of component may also
need to be altered to reflect the actual properties of that component. For example, if the
CICS assumes the mechanism needs to be datumed but the mechanism actually has abso-
lute encoders, then the “not_datumed” and “searching_for_datum” states can be removed
and the mechanism can begin in the “idle” state once initialised.

Classes of mechanism which require complex sequencing (for example the control of a
two axis probe in which there are some areas of avoidance in two dimensional space)
would need to be controlled by more complex state notation code than provided with the
CICS. The CICS only provides a basic control system, and it is each instrument team’s
responsibility to develop the extra code needed to meet their own instrument’s require-
ments. New classes of state notation code should be shared with other instrument groups
who have similar problems to solve.

Implementation

ICD 14 — Core Instrument Control System cics_smb_035/07 9 of 12

6
3.1.1 Scaling the CICS Components Controller

Often it may be necessary to adapt the CICS Components Controller to deal with a com-
pletely class of mechanism, for example a three axis continuous mechanism. The existing
mechanism classes can be scaled up to make new classes. For example, the two axis continu-
ous mechanism may be converted to a three axis continuous mechanism by the following
procedure:

1. Make a duplicate copy of the following “comp2c...” schematics, renaming them as fol-
lows and changing all the comments so they refer to a three axis mechanism:

2. Edit all the new schematics with a text editor (quicker and easier than using Capfast) and
ensure all the above schematics they refer to are renamed as above.

3. Edit “comp3cccCad.sch” and add another instance of the “compcMoveAxis.sch” sche-
matic with variables $(axis3) and $(units3), then wire this new schematic to the Move
and Park CAD records.

Rewiring this schematic may require several “mfanout” schematics to be built into a hier-
archy, or a new version of the “mfanout” schematic to be produced.1

4. Edit “comp3Car.sch” and add a new instance of the “compCarAxis.sch” schematic with
variable $(axis3). Wire this new schematic to the input of the “genSub” record.

5. Edit “comp3Mech.sch” and add a third motor with variable “motor” set to “3”.

6. Edit “comp3cSad.sch” and add a third instance of the “compcSadMotor.sch” schematic
with variables $(axis3) and $(units3) and wire this new schematic to the inputs of the
“calc” and “genSub” records. Then edit the CALC field of the “calc” records so the third
input is included in the logical test, viz:

A=0?{B=0?{C=0?0:1}:1}:1

7. Add a new mechanism to the under top level Components Controller schematic using
“comp3c.sch” and set up variables something like this:

set1 mechanism translation/focus
set2 mech dxyz
set3 units1 millimetres
set4 units2 millimetres
set5 units3 millimetres
set6 axis1 X
set7 axis2 Y
set8 axis3 Z
set9 hindex $(sadtop)combHlt.I
set10 mindex $(sadtop)combHlt.J

a. Note. The “cc” is not a typing mistake. It refers to the fact
that the mechanism is continuous along both its axes.

1. It is unfortunate that, while I have designed the CICS to be as expandible as possible, this method
of producing software by wiring up Capfast diagrams makes it hard to expand existing software.

Old name New name

comp2c.sch comp3c.sch

comp2ccCad.scha comp3cccCad.sch

comp2Car.sch comp3Car.sch

comp2Mech.sch comp3Mech.sch

comp2cSad.sch comp3cSad.sch

The Programmatic Interface

10 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

set11 cindex $(sadtop)combCar.I
set12 hindex $(sadtop)combCar.J

8. Finally, add the same mechanism to the under top level Components Controller Status
Alarm Database schematic using “comp3cSad.sch” and set up the same variables as
above.

3.2 Use of the CICS in a Detector Controller

The Detector Controller parts of the CICS are not as well-developed as the Components
Controller parts, and there are more variations possible. The basic rule is that a Detector
Controller based on the CICS must obey the Gemini ICDs (e.g. ICD 1.9.3/1.9.5, [23]). The
Detector Controller must be commandable through CAD records, and it must be possible to
monitor its status through CAR and SIR records.

Some Detector Controller operations, such as the one-off sensing and setting of voltages and
the sensing and throwing of switches, map well onto the facilities provided by EPICS. The
CICS contains an example of the setting of a bias voltage and a clock voltage. However,
there are other operations in a Detector Controller which do not map well onto the EPICS
facilities, and at the bottom level of a Detector Controller there is likely to be a lot of pure C/
VxWorks code. The following options are possible for interfacing this C code to the EPICS
system provided with the CICS.

• Take the CAD records defined by the CICS, add some more according to the require-
ments of each particular Detector Controller, and call the C/VxWorks code belonging to
the Detector Controller directly from the subroutine executed in the CAD records.

• Write some EPICS device support for the Detector Controller, as described in [32], and
activate that device support through EPICS records.

• Add some “genSub” records to the CICS Detector Controller and call the C/VxWorks
code from those.

• Enhance the state notation code provided with the CICS and call the C/VxWorks code
from within that. This option is useful if the Detector Controller has to monitor flags or
respond to outside events.

There is no reason why a Detector Controller cannot make use of all three of these modes.

The data handling side of a Detector Controller may be a lot more complex than provided by
the CICS. The information and example code provided in ICD 3, [7], can be followed.

4.0 The Programmatic Interface

Instrument groups can make use of the utility libraries, utility Capfast schematics and state
notation code provided with the CICS. These are described in the “CICS Detailed Design
Document”, [26].

5.0 Debugging

Same as ICD/7a, [11].

Error, Alarm and Logging System

ICD 14 — Core Instrument Control System cics_smb_035/07 11 of 12

6
6.0 Error, Alarm and Logging System

Same as ICD/7a, [11].

7.0 System Attributes

Same as ICD/7a, [11].

8.0 Development and Test Factors

Same as ICD/7a, [11].

9.0 APPENDIX — NIRI Case History

The Gemini Near Infrared Imager (NIRI), described in references [29] and [30], is the first
instrument to use the CICS as a template. It was surprisingly easy to interface the CICS and
NIRI together because the NIRI mechanism control system closely matched the interface
described in Section 3.1 on page 7. The NIRI mechanism control database contained a spe-
cial purpose EPICS record which handled the NIRI motors and hall effect sensors. The
actual NIRI control software is written using C-code as EPICS device support, [32]. Each
NIRI mechanism used the following interface with the CICS:

Inputs

— Demand position in engineering units (which issues an automatic “move” operation);

— “Stop” operation;

— “Find datum” operation;

— “Diagnose” operation.

Outputs

— Operation BUSY or IDLE flag;

— Operation completion status (OK or error);

— Operation completion message;

— Mechanism datumed flag;

— Current position in engineering units;

— Motor MOVING or STOPPED flag.

The following changes were necessary to the CICS to adapt it to NIRI:

1. The CICS mechanism simulators were replaced by the NIRI mechanism control data-
base, one instance per NIRI mechanism.

2. The CICS state notation language (SNL) was modified to adapt to the NIRI interface and
to NIRI requirements. In particular:

— The SNL was adapted to use the NIRI input and output records for demand position
and current position, etc...

— A “stopping” state was added to cope with the fact that real mechanisms take a finite
time to stop once a stop command has been received.

APPENDIX — NIRI Case History

12 of 12 cics_smb_035/07 ICD 14 — Core Instrument Control System

— Whenever a mechanism stopped or an operation completed the NIRI status flags were
read to determine whether the operation was successful.

— The SNL was modified to detect changes in the NIRI “mechanism datumed” flag, and
the state switched between “datumed” and “not_datumed” accordingly.

3. The CICS C code was also modified as follows:

— For NIRI it is not acceptable to datum a mechanism automatically if a move com-
mand is received before the mechanism is datumed. The CAD functions for moving
the mechanisms were therefore modified to accept a “datumed” flag on one of their
inputs and reject the command if the mechanism has not been datumed.

4. The top level Capfast schematics were modified to reflect the actual names and classes of
the NIRI mechanisms.

5. The PvLoad parameters files and lookup table files were modified to reflect the actual
allowed values and ranges of the NIRI mechanisms.

Interfacing NIRI and the CICS together roughly took about one week, and tidying up all the
loose ends took another 3 weeks. So the total effort required to interface the CICS and NIRI
together was about one month.

The NIRI source code can be consulted as an example of how to adapt the CICS for a real
instrument.

