
Created:August 26, 1994
Modified:November 13, 1997

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 1 of 20

Gemini
Controls
Group
Interface
Control
Document

ICD 10 - EPICS Synchro
Bus Driver

A.N.Johnson

ICD-10/02

This document describes the EPICS and vxWorks
interfaces to the Gemini Synchro Bus.

1.0 Introduction

1.1 Purpose

This document describes the device driver software which interfaces a Gemini Standard
Controller to the VMIVME-5588 Reflective Memory card. This software forms part of
the Gemini Standard Instrument Controller workpackage, described in the Gemini doc-
ument SPE-C-G0023[1].

Intended Readership:

• Gemini Software Developers

• Gemini Software and Controls Group

1.2 Scope

This document describes the EPICS Driver Support, EPICS Device Support and
vxWorks software available to use with a VMIVME-5588 card.

The software provides communication between IOCs for the EPICS record types:

• Long records

• Analogue records

• String records

• Array records

This allows a set of suitably equipped IOCs to pass integers, floating-point numbers,
strings and arrays via the Reflective Memory Bus.

General Description

2 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

Also provided is a subroutine-callable software interface, which allows applications to
communicate over the bus without having to use EPICS records and thus permits much
faster data transfers.

1.3 References

[1] SPE-C-G0023, SIC WPD, Gemini 8m Telescopes Project

[2] SPE-C-G0014, Gemini Software Requirements Spec, Gemini 8m Telescopes
Project

[3] GSCG.grp.017, Glossary, Gemini 8m Telescopes Project

[4] 500-005588-000 VMIVME-5588 Reflective Memory Board Product Manual, VME
Microsystems International Corporation

1.4 Definitions, Acronyms and Abbreviations

See document [3] Glossary for a complete list of acronyms and terms used in the
Gemini ICDs.

1.5 Revisions

1. August 26, 1994; Andrew N. Johnson, Original release.

2. November 12, 1997; Bret Goodrich, Updated to VMIVME-5588.

2.0 General Description

This section gives an overview of the device driver software, putting it into context
within the Standard Instrument Controller system as a whole.

2.1 Product Perspective

The Synchro Bus driver forms part of the Gemini Standard Instrument Controller work-
package, and implements a fast, deterministic interface between several IOCs. The other
new software components of the Standard Instrument Controller development are:

• Time Bus Driver

• Sample Control System

Of these, only the Sample Control System has any direct interaction with the Synchro
Bus driver — it provides a demonstration and test facility for the other components of
the SIC, and contains an EPICS database. Other drivers should not interact directly with
the Synchro Bus driver in any way for the following reasons:

• All such interaction should be controlled via the EPICS database

• Some IOCs will not have any Synchro Bus hardware installed

• It is desirable to be able to create an EPICS system which does not load unnecessary
drivers

General Description

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 3 of 20

2.2 Product Functions

The aim of the Synchro Bus driver development is to provide a means for passing infor-
mation between several IOCs in a fast and semi-deterministic manner. This is imple-
mented using the Reflective Memory system which is provided by the VMIC cardset.
The record types to be supported by the EPICS driver and device layer software are as
follows:

• Long records

• Analogue records

• String records

• Array records

The Array records provide a means of transferring several values across the bus in a
synchronous fashion, and should be used in preference to several Analogue or Long
records where data transfer must be synchronous. Alternatively synchronization can be
achieved by using the page structure of the memory with I/O interrupt scanning on the
input records.

Each Synchro Bus record provides a one-to-many broadcast over the bus, in that there
can only be one source IOC for each record, but any number of IOCs can read the cur-
rent value of the record. A protection mechanism is included within the driver to ensure
that the data which a receiving IOC reads is self-consistent.

2.3 User Characteristics

Users of the driver will fall into one of the following categories:

• Work Package Developer

• Gemini Operations Maintenance staff

The characteristics of these users are described below

2.3.1 Work Package Developer
Gemini Applications Developer as described in [2] SRS section 4.3.4.1.

2.3.2 Gemini Operations Maintenance staff
As described in [2] SRS section 2.5.2.3.

2.4 General Constraints

The software development work which this specification describes shall conform to the
general constraints and requirements set out in the Work Package Description for the
Standard Instrument Controller. This in turn requires conformance to the Gemini Soft-
ware Requirements Specification.

General Description

4 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

2.5 Assumptions and Dependencies

This specification has been based on the assumptions listed below. If any of these prove
to be invalid, the relevant parts of this document can no longer be relied upon to accu-
rately describe the requirements of the driver software.

2.5.1 Byte Order
It is assumed that all processors which will communicate over the Reflective Memory
bus using this driver software will be based on the Motorola 680x0 family, or will at
least all use the same byte-order addressing, and thus endian problems will be ignored.

FIGURE 1. Hardware Architecture

2.6 Communication Architecture

Synchro Bus IOCs communicate using EPICS database records or application-specific
shared memory which interface through the VMIC VMIVME-5588 Reflective Memory
system. This fibre-optic based distributed shared memory is referred to as the “Synchro
Bus” in other Gemini documents.

VMIVME-5588

TxRx

Fiber Optic Link

Fiber Optic Link

MVME-167

EPICS IOC

VMIVME-5588

TxRx

MVME-167

EPICS IOC

Implementation: EPICS Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 5 of 20

3.0 Implementation: EPICS Interface

This section describes how the Synchro Bus facilities are implemented using EPICS
database records and vxWorks procedure calls.

3.1 Reflective Memory Overview

The Synchro Bus is implemented using the facilities of the Reflective Memory provided
by the VMIC card. This is constructed as a distributed block of memory such that each
node keeps a copy of the whole memory contents. Reads from this memory can be satis-
fied immediately from the local copy. Writing to the memory updates the local copy and
also causes the new data and its address to be sent out over the fibre-optic network and
hence copied to all of the other nodes as well. FIFO buffers on the input and output fibre
data allow local CPU accesses to take place without affecting the update information
coming in from other nodes.

3.1.1 Memory Structure
The shared memory provided by the VMIC is divided by the EPICS driver software into
1 Kilobyte logical pages. This page structure allows the available storage space to be
partitioned between several applications so that a change in one should not require mod-
ification to the others (for example if a new record is added). It also allows for conven-
ient groupings of records for use with the I/O interrupt scanning as described below
(Section 3.1.3).

3.1.2 Symbol Naming
All the Synchro Bus input and output records use the EPICS Instrument I/O address
type to select the shared memory location which they use. This address consists of a sin-
gle ASCII string, which is looked up in the Reflective Memory name database. This
database is constructed by the IOC at boot time from a file which contains details of all
the Synchro Bus records accessed by this IOC. The file is required to enable the IOC to
convert any such name into an address in the shared memory space. The use of names in
this way is much preferable to having “magic numbers” giving a page number and off-
set in the database.

3.1.3 Interrupts
In addition to passing write data around the fibre ring, the VMIC cards provide the abil-
ity for a node to cause an interrupt to occur in another node, or to be broadcast to all
nodes. A total of three independent interrupt generators are supported by the hardware,
one of which is reserved by the EPICS driver interface to support I/O Interrupt scanning
of input records. The remaining two interrupts are available for use by applications via
the C subroutine interface.

The I/O Interrupt scanning mechanism is closely related to the page structure of the
memory, in that an interrupt is only generated when the first (“trigger”) output record on
a page is processed. This interrupt causes processing to occur for all input records on
that page in other IOCs which have their SCAN field set to I/O Interrupt. Thus by
grouping related records on the same page, the processing of the “trigger” output record
can cause a number of input records to process and thus read updated values from the
shared memory. This architecture may not be desired in all situations however because
of the database locksets in the receiving IOC — it may be preferable in some cases to

Implementation: EPICS Interface

6 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

have a single input record set to I/O Interrupt and for that to FLNK to a processing chain
containing the remaining input records. This is an application design decision.

3.1.4 Record Behaviour
The Reflective Memory architecture has the effect of permitting simultaneous read and
write accesses to the shared memory contents at the speed of the local bus. However it
also makes it possible for two CPUs to update the same location at the same time, with
the result that the memory contents at this location can get out of synchronization —
some nodes will end up with one value, others with the other, depending on their rela-
tive locations on the fibre ring. To prevent this confusion from occurring there must be a
means of restricting when and/or where in the shared memory space a particular CPU is
permitted to write data values.

In order to make the use of the Gemini Synchro Bus as flexible as possible this restric-
tion is not enforced by the EPICS driver software at all. It is the responsibility of the
applications designer to ensure that it is impossible for two IOCs to update the same
Synchro Bus location simultaneously. Normally this will be achieved by only letting
one IOC have an output record mapped to a particular location, but there are legitimate
situations where it is desirable to have the same location mapped to output records in
more than one IOC. In these cases the application must somehow determine when it is
legal for a particular IOC to process its output record and update the Reflective Mem-
ory.

3.1.5 Atomic Record Update Protection
In any application where there are two asynchronous systems communicating, there
must be a means for the two to be synchronised when they pass non-trivial amounts of
information between themselves to prevent the receiving system from getting garbled
data. For the Synchro Bus, this has been implemented by adding two protection fields to
the shared memory structure for each record. While these fields contain identical values
the contents of the record will not be modified.

When a new value is to be written by an output record, one of the protection fields is
changed before the new value is inserted, and the second protection field is made identi-
cal to the first afterwards. To read a value from the shared memory, the second protec-
tion field is fetched first, the record value copied and then the first protection field is
compared to the value fetched from the second field. If the two protection values were
different, the record value which was read is suspect so the read is tried again from the
beginning. This algorithm guarantees that the record value was not partly over-written
in the period while it was being read.

3.1.6 Synchro Bus Status
In addition to the input and output record pairs which implement communications over
the Synchro Bus, the driver contains binary input record support to allow various VMIC
status bits to be accessed from the database. These provide information such as whether
there is a signal on the input fibre, whether the fibre ring is broken, transfer errors and
FIFO status.

Implementation: EPICS Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 7 of 20

3.1.7 Power-up Behaviour
Because the Synchro Bus is a highly distributed system such that each node keeps its
own copy of the shared data, careful consideration must be made of the effects of turn-
ing an IOC off while the bus is in use. This has two main consequences:

• The fibre-optic ring will be broken while the IOC is turned off.

• When the IOC is turned back on again, its memory will be in a random state.

These effects must be known to both the applications designers and operations and
maintenance staff as they place demands on both of these groups.

While the fibre ring is broken, data updates between the remaining IOCs will not be
seen by any nodes beyond the break. If an IOC is to be switched off or removed for
maintenance and continued operation of the rest of the system is desired, a bypass cable
must be used to complete the connectivity of the ring. It is obviously desirable and may
be essential that the applications software be told that a break is to be made in the fibre,
to allow it to temporarily halt all use of the Synchro Bus ensure that no vital data are lost
while the bypass is being fitted.

When an IOC is inserted into the ring and turned on, it will boot EPICS and initialise its
Synchro Bus records, however its memory contents will be purely random at this point.
Only later when the output records in the other nodes are processed and values written
into the shared memory will the contents of the new node start to resemble those of the
other nodes. Even then only the records which were processed since the new IOC was
added will have the correct memory contents. For this reason the output records update
all the shared information associated with the record whenever they are processed. If for
example the type information was only updated when an output record was initialised
then those IOCs switched on at a later moment would never see the initialisation so the
type data would remain random. It is worth noting that the original purpose of the Syn-
chro Bus was to handle fast, non-static data, and for this type of application the behav-
iour of the system is not restrictive.

It may be desirable for Synchro Bus output records to be processed at initialisation,
because this causes their shared memory to be initialised, but care needs to be taken
with trigger records — it may be undesirable to start off the processing chains in some
remote systems. This issue must be considered by the database application designer.

Implementation: EPICS Interface

8 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

3.2 Record Type Summary

3.3 Name Database

All memory allocation within the Synchro Bus shared memory space must be done
using the facilities provided in the driver. This uses the data from one or more symbol
files to statically allocate memory for each of the requested data areas. After IOC initial-
isation the address of any symbol can be found with a single call to a driver routine.

3.3.1 Symbol File Syntax
One or more symbol files can be used to allocate memory for particular named symbols.
The symbol file is created using a text editor, and should have the following format:

• Blank lines are ignored

• Comment lines must have a ‘#’ in the first column

• Each symbol definition appears on a line of its own, and starts with one of the key-
words (in lower case) page, analogue, long, string, array or user

• The keyword is followed by up to two parameters on the same line, separated by
white space (spaces or tab characters)

• The first parameter is the symbol name, and is optional for the fixed-length key-
words page, analogue, long and string

• Symbol names may contain any printable ASCII character excluding white space,
although some may be illegal in record I/O address specifications.

• The second parameter is a short integer, and has different meanings for the different
keywords (see below)

• The second parameter can only be present if a symbol name is provided

3.3.2 Page Definition
The page keyword starts a new 1 Kilobyte logical page (see Section 3.1.1 on page 5 for
a discussion of the page structure). Pages can be named, although the name is not used
at all by the driver software so it is optional. A name is required though if it is desired to
declare a specific page number for this page, in which case the page number is given as
the second parameter to the page keyword. Normally pages are numbered in sequence
starting from page zero, but this can be overridden and pages declared out of order if

Facility
Record
Type Direction

Array Input (any type) aai From Bus

Array Output (any type) aao To Bus

64-Bit Floating-Point Input ai From Bus

64-Bit Floating-Point Output ao To Bus

Bus Status Flags bi From VMIC

32-Bit Integer Input longin From Bus

32-Bit Integer Output longout To Bus

40 Character String Input stringin From Bus

40 Character String Output stringout To Bus

Implementation: EPICS Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 9 of 20

desired. Extreme care should be taken in these circumstances as there are no checks for
duplicate use of page numbers with different or overlapping definitions. The first record
declared after each page line will have a zero page offset and thus be used as the trig-
ger record for I/O interrupts on that page.

If a record overlaps a page boundary, a warning message will be displayed during the
IOC start-up script. It may be possible to operate even with this warning, although the
page numbers allocated for later pages will be offset from those expected (unless
explicit page numbers are used, in which case some records may be declared as overlap-
ping others), and input records which appear after the overlap but on the same page will
not be triggered by I/O Interrupt scanning.

page [name [npage]]

3.3.3 Fixed Length Records
The keywords analogue, long and string are used to declare storage for these
EPICS record types. Analogue types are double-precision floating point, while longs are
32-bit integers. Strings have a fixed maximum length of 40 characters to include the ter-
minating ‘\0’. A symbol name is optional with these keywords, in which case the stor-
age space is allocated but no symbol defined. This facility allows a more flexible
organisation of the shared memory, but it is probably wise to avoid the using it unless it
proves to be essential for a particular application.

analogue [name]
long [name]
string [name]

3.3.4 Array Records
Array records provides the Synchro Bus with the ability to transfer a series of values of
any simple scalar type (this includes char, short, long, float and double as well as 40-
character strings). In order to make this as flexible as possible, the array type does not
have to be indicated in the symbol file, although the storage space required for the array
data must be given as the second parameter. A symbol name is mandatory with the
array keyword. To calculate the second parameter, multiply the number of elements
in the array by the size of each element as given in the following table. An additional
record overhead is added automatically to the space allocated when the symbol is
defined.

Value stored FTVL field Element size

8-bit signed integer CHAR 1

8-bit unsigned integer UCHAR 1

16-bit signed integer SHORT 2

16-bit unsigned integer USHORT 2

32-bit signed integer LONG 4

32-bit unsigned integer ULONG 4

32-bit floating point FLOAT 4

64-bit floating point DOUBLE 8

Implementation: EPICS Interface

10 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

array name nbytes

3.3.5 User Defined Storage
The keyword user helps provide the means by which user-defined subroutines can co-
exist in the shared memory space with Synchro Bus records. It is used to declare storage
space which can be used safely by C subroutines to pass information between IOCs
without involving or affecting the operation of the record interface. The keyword syntax
requires that both a symbol name and the number of bytes of storage required be pro-
vided as parameters to the user keyword. The use of the storage space thus allocated is
completely free to the user-defined software. A pointer to this named block of shared
memory can be obtained by passing the name string to the driver routine rmAddr with
a symbol type of RM_TYPE_USER. For more details of the rmAddr routine and a fur-
ther description of the C interface to the driver, see Section 4.0 on page 15 below.

user name nbytes

3.3.6 Loading the Name Database
The symbol file must be loaded into the IOC during the system start-up, and before the
call to iocInit which initialises all the EPICS processes. The file is loaded by passing it
as the standard input stream to the driver routine rmLoadSymbols as follows:

rmLoadSymbols < src/synchro.rms

In the above example, the symbol data is contained in a file called synchro.rms which is
kept in the application’s src subdirectory. It is possible to load more than one symbol
file by adding extra calls to rmLoadSymbols in a similar manner. This allows unre-
lated applications to keep different symbol files, and for IOCs to load only those files
they require. If this is done, it is recommended that each application be allocated a series
of pages, and that each file starts with a page keyword giving the explicit page number
to be used for these records.

rmLoadSymbols will report any errors it finds in the file as it reaches them, but will
continue processing to the end of the file. It returns a zero status if no errors were found,
otherwise it gives the EPICS error number relating to the last error it reported. The pos-
sible errors are:

40 character string STRING 40

16-bit enumerated type ENUM 2

Error Message Reason

S_dev_noMemory Can’t create RM symbol table vxWorks memory full?

S_dev_badSignal-
Number

Bad RM page number: Page number is <0 or >255

S_dev_multDevice Duplicate RM page symbol: 2 page symbols have been defined
with the same name

S_dev_multDevice Duplicate RM analogue sym-
bol:

2 analogue symbols have the
same name

S_dev_multDevice Duplicate RM long symbol: 2 long symbols have the same
name

Value stored FTVL field Element size

Implementation: EPICS Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 11 of 20

3.3.7 Displaying the Name Database
The name database can be displayed at any time using the routine rmPrintSymbols
from the vxWorks shell. This lists each name defined along with its address and symbol
type. Before iocInit the address will be shown only as an offset into the shared memory
area. The type data is given as a number, as defined in the vmi5588.h header file.

3.3.8 Example
The following is an example symbol file, and is a portion of the symbol file which
forms the acceptance tests for the Synchro Bus driver software:

Pages 10 and 11 are for the Subroutine Record Tests

page Page_10 10
analogue SYM_ALOG
long SYM_LONG
string SYM_STRG
array SYM_ARRY 8
user SYM_USER1 1
user SYM_USER2 2
user SYM_USER3 3
user SYM_USER4 4
user vmi5588testStruct 40

page Page_11
user SYM_USER_BIG 1024

When just these symbols are loaded using rmLoadSymbols, the output from rmPrint-
Symbols is

Name Addr Type
SYM_USER4 F0202C70 user
Page_11 F0203000 page
SYM_USER1 F0202C64 user

S_dev_multDevice Duplicate RM string symbol: 2 string symbols have the same
name

S_dev_badRequest Missing parameter(s) to RM:
user

Name and/or nbytes parameters
were missing for user symbol

S_dev_multDevice Duplicate RM user symbol: 2 user symbols have the same
name

S_dev_badRequest Missing parameter(s) to RM:
array

Name and/or nbytes parameters
were missing for array symbol

S_dev_multDevice Duplicate RM array symbol: 2 array symbols have the same
name

S_dev_badRequest Unrecognised RM type: Symbol type keyword does not
correspond to a valid type

S_dev_noMemory RM Page overflow, page n Too many symbols defined to fit
in a single page

Error Message Reason

Implementation: EPICS Interface

12 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

SYM_ARRY F0202C4C array
SYM_USER2 F0202C68 user
SYM_ALOG F0202C00 analogue
SYM_LONG F0202C10 long
SYM_USER3 F0202C6C user
Page_10 F0202C00 page
SYM_USER_BIG F0203000 user
SYM_STRG F0202C1C string
vmi5588testStru F0202C74 user

3.4 Output Records

3.4.1 Purpose
A database programmer can create Synchro Bus analogue, long, string or array output
records and set the output address specification (OUT field) to a Reflective Memory
symbol name. When an output record of this type is processed, the output value (from
the VAL field or via a DOL link) is written to the addressed shared memory location,
and all reflective memory input records with the same location in connected IOCs will
subsequently be able to read the new value. If the record is the trigger record for its log-
ical page, an interrupt is also broadcast onto the Synchro Bus to notify the other IOCs of
the page update and trigger any I/O Interrupt input records on the page.

The output record type must match the type declared for the symbol in the name data-
base. This data type information is also maintained within the shared memory for each
record, and is rewritten every time the record is processed.

3.4.2 Record Details

3.4.3 Usage
The PINI field for most output records should probably be set to YES. This ensures that
the shared memory contents including the data type are properly initialised on power-
up. For some records however this may not be desirable, and special consideration is
needed for trigger records — the effect of triggering interrupts on the remote IOCs
needs to be assessed (see also the discussion in Section 3.1.7 on page 7).

On the subject of ensuring that all IOCs have valid copies of the Synchro Bus data, the
applications engineer must also ensure that relatively static data is refreshed after a ring
break if it might be needed by a new or repaired IOC. This is less likely to be a problem
as slow data is unlikely to be transferred over the Synchro Bus, but there may be some
circumstances where it is, so it may be worth having a processing chain which processes
these records when the ring status goes to Good (see Section 3.6 on page 14). There is a

Record Type DTYP field OUT field Comments

aao (array out) VMI5588 Synchro Bus @name Arrays of any data type

ao (analog out) VMI5588 Synchro Bus @name Double precision floating-point

longout VMI5588 Synchro Bus @name 32-bit integer

stringout VMI5588 Synchro Bus @name String of up to 40 characters

Implementation: EPICS Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 13 of 20

maximum data rate over the optical fibre which cannot be exceeded, so it is undesirable
to refresh data periodically if it does not need doing.

Synchro Bus Output records do not support I/O Interrupt scanning — this is not a sensi-
ble option. An output record which has a zero address offset from its logical page (i.e.
the first record on a page) will trigger I/O Interrupt scanning on all input records in other
IOCs in the same page. Input records in the same IOC are not triggered (this would be a
simple modification to the driver if it is required).

3.5 Input Records

3.5.1 Purpose
A database programmer can create Synchro Bus analogue, long, string or array input
records and set the input address specification (INP field) to a Reflective Memory sym-
bol name. Whenever the input record is processed, its VAL field will be updated with
the current contents of the shared reflective memory. The record type must match the
type declared for the symbol in the name database, and must also match the contents of
the shared memory whenever the record is processed.

3.5.2 Record Details

3.5.3 Usage
It is generally not a good idea to have the PINI field of input records set to YES because
it is unlikely that the contents of the local shared memory will have been initialised in
the short time between turning the IOC on and it initialising. No harm will be done if
PINI is set however, because the memory contents are checked before the record value
is read — the input record value will be set to Undefined if the shared memory contents
do not match the record type.

The input record value will also be set to undefined if another record overlaps it for any
reason and the data type information in the shared memory does not match the input
record type. In fact if there are record overlaps then other errors may also occur, the
most likely being a device timeout with the error message “update protection count.”
This is an indication that even though the shared record type field matches the record
type correctly, the two protection fields did not become equal in ten attempts to read the
record value. See Section 3.1.5 on page 6 for details of this.

If the Reflective Memory Fibre Ring is broken for some reason, this will not affect any
of the Synchro Bus input or output records. They will continue to function, although the
data will not be able to circulate correctly around all the nodes. An application should
monitor the status of the Fibre Ring using a Status Input bi record as described below to
halt data transfers and flag alarms as desired.

Record Type DTYP field INP field Comments

aai (array in) VMI5588 Synchro Bus @name Arrays of any data type

ai (analog in) VMI5588 Synchro Bus @name Double precision floating-point

longin VMI5588 Synchro Bus @name 32-bit integer

stringin VMI5588 Synchro Bus @name String of up to 40 characters

Implementation: EPICS Interface

14 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

Synchro Bus Input records support I/O Interrupt Scanning, using the logical page as a
means of having multiple independent interrupt sources. See Section 3.1.3 on page 5 for
a more detailed discussion on I/O Interrupt scanning.

3.6 Status Input

3.6.1 Purpose
The VMIC Reflective Memory hardware provides a means to test the integrity of the
fibre-optic cable under software control. In order to access this status information from
the database, support is provided in the Synchro Bus driver to allow a number of binary
input records to get this information. Each bi record monitors a single status bit from the
reflective memory card. The status of the card is read every time one of these records is
processed, and the relevant status bit returned. In all cases a status of zero is good. The
status bit to be tested is selected by the string given in the record’s INP field.

3.6.2 Record Details

3.6.3 Usage
Each different Status Input record address returns the value of the named bit as defined
for the rmStatus user subroutine. If an application contains both subroutine calls to
rmStatus and Status records, the developer must be aware that the RM_RESYNC
and RM_BADXFR status bits will be cleared by a Status record which addresses them,
and so these status values may be missed by the subroutine status check. Similarly if the
subroutine clears these bits, they will not be accurately reported by the appropriate Sta-
tus record.

A “bad status” value from the VMIC card will only raise an alarm if the bi record has
been set up to do so by setting the OSV field to the required alarm severity.

I/O Interrupt scanning is not supported for Status Input records — use periodic process-
ing at a fast scan rate to obtain the maximum status information. In general however a 1
second scan should normally be sufficient for most applications.

Record
Type DTYP field INP field Comments

bi VMI5588 Synchro Bus @RM_NOSIG No Input Fibre Signal

bi VMI5588 Synchro Bus @RM_NOSYNC No PLL Synchronization

bi VMI5588 Synchro Bus @RM_RESYNC Input Sync lost recently

bi VMI5588 Synchro Bus @RM_NORING Fibre Ring broken

bi VMI5588 Synchro Bus @RM_BADXFR Bad CRC on input packet

bi VMI5588 Synchro Bus @RM_TXHALF Transmit FIFO half full

bi VMI5588 Synchro Bus @RM_RXHALF Receive FIFO half full

bi VMI5588 Synchro Bus @RM_IRQ1 Device Support Int. pending

bi VMI5588 Synchro Bus @RM_IRQ2 User Interrupt #1 pending

bi VMI5588 Synchro Bus @RM_IRQ3 User Interrupt #2 pending

Implementation: C Subroutine Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 15 of 20

4.0 Implementation: C Subroutine Interface

4.1 Purpose

A subroutine interface is provided which can be used simultaneously with the database
records and provides the ability to avoid the EPICS record processing overheads and so
obtain the best performance from the medium. The interface subroutines available are
described below.

When using this low-level interface, all responsibility for handling memory initialisa-
tion, ring break recovery and synchronization between CPUs must lie with the applica-
tions developer — the discussion of these aspects in Section 3.1 should be studied to
gain appreciation into the behaviour of the Reflective Memory. The effects of accessing
memory outside of the areas reserved for user-defined shared storage are not guaran-
teed.

4.2 Header File

The header file associated with the Reflective Memory C subroutine interface is distrib-
uted as part of the Gemini EPICS distribution in the base/include directory and is named
vmi5588.h. This declares all the routines listed below, and the data type and status bit
preprocessor symbols required. Note that the file also contains some data structures and
routines which are intended for private use by the EPICS driver software — only the
interfaces described in this document should be used by user-level code.

4.3 Name Database

The first two routines here have already been described in Section 3.3 on page 8. These
load the Name Database from a symbol file and print the current database respectively.
The third routine is called to obtain a pointer to a named shared memory user area.

4.3.1 rmLoadSymbols

• Definition

long rmLoadSymbols(void);

• Inputs

Standard Input (symbol file)

• Outputs

Return status, 0=good, or S_dev_* error number

Reads a symbol file from the standard input file descriptor and creates a Name Database
(or appends to the existing one) from its contents. See Section 3.3 on page 8 for a
description of the symbol file syntax.

4.3.2 rmPrintSymbols

• Definition

void rmPrintSymbols(void);

• Inputs

Implementation: C Subroutine Interface

16 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

None

• Outputs

Standard Output (symbols)

Prints the contents of the Name Database. For each symbol, the symbol name and its
address and type are displayed. If the IOC has already been initialised the address given
is the local machine address, otherwise the value given is an offset into the shared mem-
ory structure (note this is not just an offset from the base address of the vmi5588 card).

4.3.3 rmAddr

• Definition

void *rmAddr(char *pname, int rmType);

• Inputs

Symbol name

Symbol type (RM_TYPE_USER)

• Outputs

Returns pointer to shared memory location, or NULL

Looks up a symbol name in the Name Database and returns its associated physical
address within the shared Reflective Memory card. The symbol type argument rmType
must match the type definition in the database — for the purposes of the low-level user
interface routines this argument should always be RM_TYPE_USER, a preprocessor
macro defined in the header file which returns the symbol type for all user symbols.

4.4 Hardware Status

Two routines provide information about the vmi5588 card and its settings. The informa-
tion provided by the status call can also be obtained via the database. The node ID pro-
vides the local node address, which is a means of uniquely identifying each vmi5588
card on the ring and is required for directed interrupts. These routines will return an
error status if called before iocInit or if there is no card present in the system.

4.4.1 rmStatus

• Definition

long rmStatus(long reset);

• Inputs

Status bit-pattern to clear

• Outputs

Returns vmi5588 card status bit-pattern, or S_dev_* error number

Implementation: C Subroutine Interface

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 17 of 20

Reads vmi5588 card status and returns a bit-pattern comprising 10 status bits. The val-
ues for these status bits are defined as preprocessor macros in the header file with the
following names and meaning:

The input parameter can be used to clear one or both of the latched status bits by ORing
together the relevant status bit values. For example,

stat = rmStatus(RM_RESYNC);
reads the card status into stat and clears the RM_RESYNC bit if set, but does not clear
the RM_BADXFR bit. If the value of the status returned is outside the range 0 to 65535
inclusive, the value is an S_dev_* error number, implying the card cannot be accessed.

4.4.2 rmNodeID

• Definition

long rmNodeID(void);

• Inputs

None

• Outputs

Returns Node number of this VMI5588 card, or S_dev_*

Returns the node address of the vmi5588 card, a number in the range 0 to 255 inclusive.

4.5 Interrupts

The vmi5588 card provides 4 interrupt channels numbered 0 to 3, of which channel 1 is
used by the EPICS driver software to implement page triggering. Channels 2 and 3 are
available for user software to pass information between nodes. Channel 0 does not pro-
vide communication between IOCs but generates interrupts in the event of data transfer
errors or the input or output FIFOs becoming full.

Three routines provide access to the vmi5588 interrupt system, allowing user-level sub-
routines to send and receive notification of events over the bus. Both broadcast and
node-specific interrupts are supported. These routines can only be used after iocInit; an
error status will be returned if called before the driver has been initialised or if there is
no vmi5588 card present in the system.

Macro Name Meaning when bit set

RM_NOSIG No Signal from Input Fibre

RM_NOSYNC Input PLL not synchronised

RM_RESYNC Input PLL Synchronisation lost recently (latched)

RM_NORING Fibre Ring broken

RM_BADXFR Bad CRC on incoming packet, data lost (latched)

RM_TXHALF Transmit FIFO half full

RM_RXHALF Receive FIFO half full

RM_IRQ1 EPICS Device Support Interrupt pending

RM_IRQ2 User Interrupt #1 pending

RM_IRQ3 User Interrupt #2 pending

Implementation: C Subroutine Interface

18 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

4.5.1 rmIntSend

• Definition

long rmIntSend(int irqNumber, int nodeId);

• Inputs

Interrupt Number (2 or 3)

Node number to receive interrupt, or -1 for broadcast

• Outputs

Return status, 0=good, or S_dev_* error number

Sends an Interrupt to the vmi5588 node given by the nodeId. If a broadcast interrupt is
desired, the value -1 should be used for the node number. Two independent interrupts
are available which can be used by different applications, or for two different meanings
in a single application.

4.5.2 rmIntConnect

• Definition

long rmIntConnect(int irqNumber, VOIDFUNCPTR proutine);

• Inputs

Interrupt Number (0, 2 or 3)

Pointer to user Interrupt Service Routine

• Outputs

Return status, 0=good, or S_dev_* error number

Connects incoming vmi5588 interrupts on the channel given by irqNumber to a user-
defined subroutine which must be declared as returning void and taking a single param-
eter which contains the node number of the interrupt source:

void proutine(int srcNode)

This routine must follow the vxWorks rules for interrupt service routines, which restrict
the OS calls which can be made and prohibit busy-waiting for example. EPICS permits
some of its routines to be used within ISRs — see the EPICS IOC Application Devel-
oper’s Guide for details. The user routine is actually called by a wrapper routine within
the driver which reinitializes the interrupt hardware after the user routine has returned.

4.5.3 rmIntDisconnect

• Definition

long rmIntDisconnect(int irqNumber);

• Inputs

Interrupt Number (0, 2 or 3)

• Outputs

Return status, 0=good, or S_dev_* error number

Disconnects the user Interrupt Service Routine on the given interrupt channel number.

Performance and Usage

ICD 10 - EPICS Synchro Bus Driver ICD-10/02 19 of 20

5.0 Performance and Usage

As part of the Acceptance Testing for the Synchro bus software, several performance
measurements were made and statistically averaged over a large number of readings.
The tests are described in more detail in the Synchro Bus Software Test Specification,
and the data obtained give

• Output record to Input record latency between 2 SNL programs

• C subroutine interrupt latency

• C subroutine data transfer rate

The results measured are summarised in the following tables:

TABLE 1. Latency, SNL to Trigger output record to I/O Interrupt input record to SNL

Measurement (s) 100 cycles 500 cycles

Min. latency, A to B

Min. latency, B to A

Max. latency, A to B

Max. latency, B to A

Mean latency, A to B

Mean latency, B to A

RMS, A to B

RMS, B to A

TABLE 2. Latency, C subroutine rmIntSend to C subroutine user ISR

Measurement (s) 100 cycles 500 cycles

Min. latency, A to B

Min. latency, B to A

Max. latency, A to B

Max. latency, B to A

Mean latency, A to B

Mean latency, B to A

RMS, A to B

RMS, B to A

Performance and Usage

20 of 20 ICD-10/02 ICD 10 - EPICS Synchro Bus Driver

A comparison between Tables 1 and 2 above shows the penalty involved in using
EPICS records, the State Notation Language and Channel-Access to transfer data via
the Synchro bus. The time delays involved here are such that the Synchro Bus gives a
significant advantage to using Channel-Access over an Ethernet, but that for the highest
performance applications it is essential to utilise the C subroutine interface. The original
performance requirement placed on the Synchro Bus driver software was:

A series of 10 32-bit floating point numbers representing Zernike polynomial coeffi-
cients shall be able to be transmitted between two IOCs at an update rate of 200Hz, with
a maximum latency of 200 microseconds from source to destination records. In addition
to this, the goal for the timing jitter of this transmission should be 20 microseconds.

It is clear from the above results that this requirement can be reached easily by using the
C subroutine interface, but not at all from the EPICS record support.

TABLE 3. Time for C subroutine to memcpy 1 Kbyte of data into Reflective Memory

Measurement (s) 100 cycles 500 cycles

Min. time

Max. time

Mean time

RMS time

Data Rate (Mb/s)

