
Created:July 20, 1994
Modified:January 15, 1997

ICD 1a The System Command Interface gscg.kkg.009/013 1 of 24

Gemini
Controls
Group
Interface
Control
Document

ICD 1a
The System Command Interface

Kim Gillies and Steve Wampler

gscg.kkg.009/013

This report describes the software interface between OCS
applications and other principal systems.

1.0 Introduction

1.1 Purpose

This ICD document specifies the principal system software interface that lies between
and directly couples two communicating principal systems.

In detail it:

1. Indicates the nature and behavior of the software interface.

2. The functionality and software interface principal systems work package developers
can expect from the OCS group software.

3. The functionality and software interface the OCS work package developers can
expect from the other principal systems developers.

1.2 Scope

The ICD1 documents describe the OCS command architecture and define the require-
ments for the software interface between the Command Layer and the Attribute/Value
Layer in the Systems Interface [3]. This document describes the software that will be
provided by the Observatory Control System group that allows one principal system to
command another principal system or another OCS application. This document together
with the other ICD1X (where X can be b, c...) documents describe the entire command
path from the top of the system to the hardware.

Details and specifications of the implementation of the Attribute/Value layer in an
EPICS-based principal system are found in ICD1b [2]. Details and specifications of the



Introduction

2 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

implementation of the Attribute/Value layer in the Data Handling System is given in
ICD1c.

For EPICS-based principal systems, no software need be written by work package
groups to receive commands from the OCS or to post status. Therefore, this document
now focuses on providing a general understanding of the software that is provided by
the OCS and Gemini Project Office and how the software should be used by work pack-
age groups.

This document, ICD1a, provides only an overview of the OCS command architecture.
The details of the OCS design and implementation appear in the OCS Work Project
design documents. The most recently published OCS design information appears in the
OCS Preliminary Design Documents [7]. This functionality is within the OCS work
package and the detailed design of the OCS is not required to understand this ICD. This
document has been changed to reflect the evolution of the OCS and system designs as
those systems have been refined during the review process.

This document does not describe the status/alarm principal system interface. That inter-
face is described in ICD 2.

1.3 Applicable Documents

[1] SPE-C-G0037, Software Design Description, Gemini 8m Telescope Project.

[2] GSCG.grp.024, ICD 1b - The Baseline Attribute/Value Interface, Gemini 8m
Telescope Project.

[3] GSCG.kkg.005, Baseline Major Systems Interface, Version 003, 28/6/94, Gemini
8m Telescope Project.

[4] GSCG.kkg.002, OCS Behavioral Interface Model Report, Version 001, 23/6/94,
Gemini 8m Telescope Project.

[5] GSCG.grp.001, A Report on the Interface Model Issues, Gemini 8m Telescopes
Project.

[6] GSCG.grp.016, Glossary for the Gemini Software, Gemini 8m Telescopes
Project.

[7] OCS Preliminary Design Review Documents, (Not yet released by controls
group), available from them. FIX THIS!

[8] GSCG.kkg.017, Two Command Models, Gemini 8m Telescopes Project.

[9] EPICS: IOC Application Developers Guide, Los Alamos National Laboratory.

[10] SPE-I-G0009, Software Programming Standards, Gemini 8m Telescopes Project.

[11] SPE-C-G023, “The Gemini Standard Controller Hardware Documentation”,
Andrew Johnson, Royal Greenwich Observatory.

1.4 Abbreviations and Acronyms

ACM Action Command Model

AVL Attribute/Value Layer

CA EPICS Channel Access message system



Introduction

ICD 1a The System Command Interface gscg.kkg.009/013 3 of 24

DHS Data Handling System

EPICS Experimental Physics and Industrial Control System

GCS Gemini Control System

ICD Interface Control Document

IOC Input/Output Controller

OCS Observatory Control System

PSBI Principal Systems Baseline Interface

SDD Software Design Description

TBP To Be Provided

1.5 Glossary

Additional glossary information is available in [6].

Attribute — An attribute is a textual description of some part of a Gemini based hard-
ware or software system. An attribute has an associated value.

Attribute Group — Attributes can be collected into related groups of zero or more.

Configuration — The set of attributes that detail the conditions necessary to move the
system from one state to another is called a configuration.

Principal System — At the highest level in the GCS software decomposition, the soft-
ware system is divided into four kinds of software systems called principal systems.
The four types are called: the Data Handling System, the Observatory Control Sys-
tem, the Telescope Control System, and the Instrument Control System. There may be
up to four concurrently executing Instrument Control Systems.

Service — A service is a software interprocess communication method. Services enable
communication between two applications. An example of a service is EPICS Channel
Access.

System Configuration — A configuration can be split into sets of attributes for each
system. These sets are system configurations.

Systems Interface — The principal systems within the GCS software design interact
with one another through the Systems Interface.

Value — The value is the data associated with a particular attribute.

1.6 Stylistic Conventions

Program text is shown in the Courier typeface.



Overview

4 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

2.0 Overview

The Software Design Description [1], describes the Gemini Control System software.
This document assumes familiarity with the software design and terms defined in the
design document. Documents [3] and [4] can help relate the contents of this document
to the overall software design.

2.1 System Hardware Architecture

The Gemini Control System is a distributed system executing on machines of different
types and operating systems. The real-time principal systems software executing in the
Telescope Control System and the facility Instrument Control Systems is based on a
combination of VxWorks and EPICS. The Data Handling System and some visitor
instruments may not be EPICS based, but the principal systems interface must allow
communication between the OCS and all principal systems regardless of their operating
environment.

Figure 1 shows how the principal systems would typically be distributed between
VxWorks/EPICS systems and Unix-based systems. A “non-conforming” ICS is a facil-
ity ICS that is not based on EPICS/VxWorks.

FIGURE 1. Typical Gemini Principal Systems Hardware Arrangement

2.2 Communication Architecture

There is no hardware communication architecture specified. This interface describes the
boundary between principal systems or Work Package groups.

OCS
(Unix-based)

TCS
(EPICS-based)

ICS(2) ICS(4)
(EPICS-based)

Other TCS

(EPICS-based)

Unix-Based Principal Systems VxWorks/EPICS-based Principal Systems

DHS
(Unix-based)

ICS(3)
(EPICS-based)

ICS(1)
(EPICS-based)

(non-
conforming)

Subsystems



Behavior

ICD 1a The System Command Interface gscg.kkg.009/013 5 of 24

2.2.1 Context Diagram
Figure 2 shows the relationship between ICD1a and the remaining software system.

FIGURE 2. ICD1 Context Diagram

2.2.2 Events and Responses
See Table 1 on page 8 and Table 2 on page 9 for the description of ICD1 Events and
Responses.

3.0 Behavior

3.1 Design Overview

The OCS command design is based on the Principal System Baseline Interface
(PSBI)[3], a layered design for communication. Figure 3 shows the PBSI. The Com-
mand Layer is above the Service Layer and below the Recipe and Console Command
layers. The Recipe and Console Command Layer can use the features of the Command
Layer or the Service Layer as is shown by the arrow descending from them to the Ser-
vice Layer. This ability allows maximum flexibility.

The PSBI no longer depends on a Principal System Agent. The use of a Principal Sys-
tem Agent is an OCS implementation issue, not an interface issue (see later in this doc-
ument).

This document focuses on the interface between two layers of the Principal Systems
Baseline Interface (PSBI): the Service Layer and the Attribute/Value layer. The role of
each of the layers follows. Note that this is a behavioral description and not an imple-
mentation description.

ICD -1a Software Interface



Behavior

6 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

Recipe Layer. High-level OCS observing scripts manipulate configurations. The Rec-
ipe Layer provides script access to the configuration features of the Command Layer.

Console Command Layer. Some screens and scripts perform individual control com-
mands. The Console Command Layer provides script support for the use of individual
commands by applications.

Command Layer. The Command Layer builds upon the Service Layer features to pro-
vide configuration-based functionality to the Recipe and Console Command layers.

Service Layer. The Service Layer provides a service-independent software interface to
the communication systems used in the software system. Each service does two things:
it encapsulates an interprocess communication method and provides the “glue” that ties
the Service Layer software interface to the service’s Attribute/Value Layer.

Attribute/Value Layer. This layer is the public software interface provided by a target
application or principal system. This interface is used by the Service Layer to provide
uniform behavior to the OCS.

Real-time Layer. The real-time layer contains whatever software is executing in a prin-
cipal system or application. This layer provides the functionality of the system.

The following figure shows the software layering in the PSBI. The Recipe Layer, Con-
sole Command Layer, Command Layer, and Service Layer are entirely within the
source principal system. The Attribute Value Layer is within the target principal system.

It is important to note that not every PSBI layer is required in all situations. The layers
provide support for features in the OCS design but are not required in all situations. For
instance, a console GUI can use just the EPICS Service through the Service Layer to
send commands to an EPICS system without using the Command Layer features.

FIGURE 3. Behavioral Layering of the Configuration Model (based on Figure 4 in [3])

Real-Time Layer

Command Layer

Target Principal
System

Source Principal
System

Recipe Layer or Console Command Layer

Attribute Value Layer

OCS Realm

TCS/DHS/ICS Realm

Message System

Service Layer



Behavior

ICD 1a The System Command Interface gscg.kkg.009/013 7 of 24

The cross-hatch pattern in Figure 3 shows the interface described in this document and
specified in the related ICD1X documents (ICD1b and any other ICD1X documents that
are needed in the future). The shaded portion above the cross-hatch pattern is software
that is the responsibility of the OCS Work Package group.

The software below the pattern is the responsibility of the Gemini Controls Group in the
Gemini Project Office. In particular, the EPICS attribute/value layer software is pro-
vided by this group.

It is the job of the implementation groups to use the Attribute/Value layer software prop-
erly (as described later in this document) and to document the commands that they pro-
vide to other systems. (SEE PDF???).

3.2 Command Layer

The Command Layer resides entirely within the OCS and is not visible to other systems.
This layer accepts OCS commands from the Recipe Layer or the Console Command
Layer. Each command includes a reference to a configuration.

The Command Layer separates a configuration into the system configurations for each
destination principal system or application. It then routes each to the appropriate target
using one of the Services provided by the Service Layer. Each Service converts its sys-
tem configuration into a set of attribute/value pairs, along with a name of the OCS com-
mand to be executed.

The set of attribute/value pairs is communicated to the Attribute/Value Layer of the tar-
get system.

It is the Command Layer that is responsible for monitoring the progress of configuration
commands and determining when each of the configuration commands has completed.
Command completion is determined by examining the completion properties of each
system configuration that is included in the command.

If directed, the Command Layer must notify the commanding layers above it when
changes occur in the status of a command.

The Command Layer must monitor multiple, concurrent outstanding commands from
multiple sources.

3.3 Service Layer

The OCS must provide an open, expandable command system. To meet this need the
Service Layer provides a single, common software interface above whatever software is
required to allow the OCS to communicate with another principal system or software
component (called a Service).

The Service Layer provides the “glue” software that makes each Service behave in the
manner described in the Service Layer software interface. Each Service knows about
one type of Attribute/Value layer.



Behavior

8 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

TABLE 1. Behavior of the Command Layer in Response to Events

3.4 Attribute/Value Layer

This layer accepts lists of attribute/value pairs that have been communicated to the tar-
get principal system in a manner appropriate for the target system by a Service. Often,
that may mean that the A/V pairs are grouped with others by the target system into
attribute groups. The Service Layer must be aware of these groups and be able to signal
the target system when an attribute group has been transmitted.

An Attribute/Value Layer has no knowledge of outstanding commands and should not
retain command related state.

An Attribute/Value Layer must be capable of notifying its Service in the Service Layer
when changes occur to attributes that have been set.

Proper operation of this layer requires that attributes exist in the target principal system
or application for the status (Busy, Errors, etc.) of actions that result from attempting to
match actual system attributes to commanded values.

Event Response

Configuration com-
mand received

Return “Command received” acknowledgment.
Register this as an outstanding configuration command.
Split the command configuration into a set of system con-

figurations.
For each system configuration

Communicate the system configuration to the appro-
priate Service.

Ask to be notified when this system configuration is
done or changed — do not wait for this.

“System configuration
DONE” received

Determine which command this system configuration
belonged to.

Note the fact that this system configuration has been com-
pleted.

Check for error.
If all the system configurations for this command have

been completed then
Synthesize and return “Configuration Command

Completed”.
Remove this command from the outstanding com-

mand register.
End if

“System configuration
changed” received

Determine which command this system configuration
belonged to.

Note the fact that this configuration has been changed.
Report the change to whichever part of the system this

command came from.



Implementation

ICD 1a The System Command Interface gscg.kkg.009/013 9 of 24

TABLE 2. Behavior of Attribute/Value Layer in Response to Events

4.0 Implementation

Document [5] discusses the rational for the Systems Interface implementation decisions
of document [3]. This section discusses the overall implementation of the PSBI. It is fol-
lowed by a section on the Attribute/Value Layer.

Each component (task/thread/process) in the OCS that communicates with other princi-
pal systems contains the implementation of the PSBI which can include the Recipe
Layer, Console Command Layer, Command Layer, and Service Layer. Using the imple-
mentation, a component can communicate with the principal systems by making calls to
the Command Layer Library or the Service Layer. The OCS also uses a Service to allow
one OCS application to communicate with another OCS application.

4.1 OCS Strategies

The open design of the PSBI allows for flexible composition of the OCS and the Gemini
software system. The following sections show some common scenarios for connecting
software system components. In the following the Command Layer is not included to
make the figures more clear. However, it can be inserted between a component and the
Service Layer in any of the figures.

4.1.1 OCS Communication with EPICS Principal Systems
An important software interaction occurs when the OCS communicates a command
request to one of the EPICS-based Principal Systems. This case is shown in Figure 4.
The OCS component passes the command to the Service Layer that uses the EPICS Ser-
vice to communicate the request to the EPICS Attribute/Value layer in the target EPICS
system. That EPICS Attribute/Value Layer uses the attributes to modify the activities in

Event Response

Attribute/Value pair or
Attribute/Value group
received from source

Principal System

Return “A/V received” acknowledgment
Process the A/V pair or group as needed for the principal

system.

“Attribute group com-
plete” received from
target Principal Sys-

tem

Mark attribute group as complete in the system configura-
tion.

“System Configura-
tion Done” received
from real-time sys-

tem.

Pass notification of system configuration completion to the
Service Layer.

“Attribute/Value pair
changed” received

from Real-time layer

Pass notification of attribute changes to Service Layer.



Implementation

10 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

its Real-time Layer. The target EPICS system keeps the OCS EPICS Service up to date
on the progress of the actions the command initiated.

FIGURE 4. One OCS Component communicates with an EPICS system

4.1.2 Two Communicating OCS Applications
Communication between OCS applications takes place using the OCS Service in the
target and source. This is shown in the following figure where the sending application
directly uses the Service Layer.

The request moves from the Service Layer to the OCS Service. It is received by the tar-
get OCS Service and is passed to the Service Layer and then executed in Component B.

FIGURE 5. One OCS Application sends a command to another and receives a reply.

4.1.3 Use of an Agent Process
Sometimes it is useful or required to provide an application on a workstation that has the
sole job of representing another software or hardware system. An application that pro-

OCS Host A

Service

OCS Host B

Comp
A

Layer
EPICS Service

EPICS
Service

EPICS
Attr/Value

Layer

EPICS
Real-Time

Layer

OCS Host A

Service

OCS Host B

Comp
A

Layer
OCS Service

OCS
Service

Service

Comp
B

Layer

OCS
Service



The Baseline Attribute/Value Interface

ICD 1a The System Command Interface gscg.kkg.009/013 11 of 24

vides this function is called an Agent. For instance, if a visitor instrument is primitive
and communicates over a serial line, it can be integrated into the Gemini system using
an Agent process. The Agent process is an OCS application that provides the required
functionality of an OCS application and encapsulates the details of the foreign software
or hardware.

This is similar to the role of a Service in the PSBI. However, as in the case of the serial
device example in the previous paragraph, a Service is not always possible. A
Service solution  would require that applications that access the serial device run only
on the host that has access to the serial line. Clearly, this is not always desirable. An
agent allows any OCS application on any host to command the serial device by commu-
nicating with the device’s Agent. The following figure shows how this problem is solved
in the Gemini system. The Agent must provide proper Gemini behavior by hiding any
incompatibilities of the serial device.

FIGURE 6. One OCS Component communicates with an Agent-based device

An Agent can be used to represent any Gemini system component including an entire
Principal System if necessary.

5.0 The Baseline Attribute/Value Interface

This section describes how an Attribute/Value Layer should behave in the Gemini soft-
ware system. The EPICS Attribute/Value Interface is described in detail in [2].

EPICS is a core Gemini technology and the EPICS system provides the basis for the
model for command flow used in Gemini and presented in this section. It is required that
all Services or Agents provide the behavior described in this section. This section is
comes from [8].

OCS Host A

Service

OCS Host B

Comp
A

Layer
OCS Service

OCS
Service

Service

Agent

Layer

OCS
Service

Serial
Comp



The Baseline Attribute/Value Interface

12 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

5.0.1 The Action Command Model
One of the unique features of EPICS is that an IOC’s activities are driven from changes
to attributes in the IOC’s database. The result of writing an IOC record is that actions
occur in an IOC. An EPICs IOC has no concept of a command. Neither knowledge of
the source of a command nor the command itself exists in an EPICS IOC once the com-
mand has been received and the actions started. This behavior is called the Action Com-
mand Model (ACM).

An Attribute/Value Layer and any system beneath that layer is expected to implement
the Action Model.

In the Action Command Model a request message, called an Action Directive, is sent to
a destination process and the message and its contents are immediately accepted or
refused. Acceptance means the actions associated with the request will be started.
Refusal of a request might occur, for instance, if a command’s arguments are invalid or
the related actions are already in progress and can’t be altered. Once accepted, all
knowledge of the sender is forgotten – the destination system is stateless with regard to
commands. No information about a command is retained in a target system once a com-
mand is started. This is a fundamental of the ACM.

In the ACM, an Action Response allows the source of a request message to track the
progress of the actions associated with the request. An action response is a message or
database record with a value that describe the progress of one or more actions. Some
possible examples for action response values are: moving, busy, done, or error. The
action response values are a type of status value. Most status values describe the static
state of a component (i.e. the current position of a filter wheel). An action response
describes the activities of a particular component (hardware or software), group of com-
ponents, or subsystem.

The ACM relies on defining the possible values for an action response and a protocol for
their generation by a commanded system. The protocol must make sense in the variety
of command situations that can occur in our control systems. An action initiated by a
command may be composed of multiple ‘subactions’, but there must be a single action
response associated with the actions. There may also be Action Responses for the sub-
actions but these need only be monitored when efficient sequencing depends upon the
completion of one or more of the subsystems. This does not mean that there must be a
one to one correspondence between action directives and action responses.

An example is probably required. A source system is commanding the destination sys-
tem to move a filter wheel from its current position (2) to a new position (4). The
progress of the initial request and actions is shown in the following figure. The example
is based on an EPICS system where the filter is represented by a CAD process variable
that acts as the target for the action directive. A CAR record is used to provide an action
response.

At Step 1, the source sends a message to the destination requesting that a filter wheel
move to position 4. The command is accepted by the destination and acknowledged at
Step 2. The “command” is now complete. The command acknowledgment does not
come from the action response but from the commanded entity (the filter variable). It
must be possible to accept and check arguments for commands independently of any



The Baseline Attribute/Value Interface

ICD 1a The System Command Interface gscg.kkg.009/013 13 of 24

ongoing actions (an example requiring this is an offset record where the argument is an
incremental offset).

FIGURE 7. An Example of the Action Command Model

The destination begins the actions associated with the request once the request is
accepted and the action response goes to busy and the source of the request receives
notification at Step 3. Step 4 shows how an alert (or trigger) could be provided when the
filter wheel reaches an intermediate value of 3. At Step 6, the action response monitored
by the source is set to done - the action is complete.

The following important points are true in systems based on the Action Model.

Source Filter

filter: 4

Status
Value

Filter
Action
Response

Filter
Attribute

2

done

busy

done

alert

4

2

busy

done

2

3

4

2

3

4

4

4

4

P

ackedP

P

P

working!

done

P

P

busy

alert

1

2

3

4

5

6

Step



The Baseline Attribute/Value Interface

14 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

• The command only exists in the destination software system long enough to guaran-
tee that the actions requested in a command have been accepted.

• No state is contained in the destination that associates activities with a particular
command or command source. The target should be stateless with regard to action
requests.

• Source systems determine when actions are completed in a destination system by
monitoring action responses that describe the progress of relevant actions.

The Action Command Model (ACM) is an approach to commands and command com-
pletion that is well attuned to EPICS.

There is no requirement that there be a one to one relationship between action directives
and action responses. In the most coarse case a system might only have a single action
response. In that case, a source system can only tell when some action is underway in
the target system. As more fine-grain action responses are added, it becomes possible
for the source of a command to synchronize its activities with the actions in the target
system.

It is also vitally important to realize that in the ACM a specific action request can not be
tied directly to a specific activity or action response. All one can say is that some action
directive was received by the system that resulted in the actions starting. The connection
between a specific action directive and an action response must be added by other soft-
ware. This is done in the Gemini system through access control and client id in EPICS
systems.

5.0.2 Action Model Response Protocol
The workability of the action model depends on the protocol and interpretation of val-
ues in the action responses. The initial protocol and set of values is defined here.

The protocol and value set can be represented well as a finite state machine as shown in
Figure 8 on page 15. Action Response values are the states shown in capital letters. The
inputs that move the entity to new action states are shown in bold. The action state of the
entity is inferred from the action responses.

A simple action would be represented by done->busy->done with action response IDLE
to BUSY and back to IDLE.

The PAUSED state is entered when an ongoing action is paused. The continue action
response moves the entity to BUSY and cancel moves it to IDLE.

An ongoing action can post a message for an upper layer by issuing the alert action
response and moving to the ALERTED action state and then back to BUSY.

If during an ongoing action, the entity’s behavior is modified, the entity can issue the
modified action response and move back to BUSY. In some cases, this might be viewed
as an error, but this is determined by the entity itself, not the protocol.



The Baseline Attribute/Value Interface

ICD 1a The System Command Interface gscg.kkg.009/013 15 of 24

FIGURE 8. Action Response Protocol

The ERROR action state is entered when an ongoing action fails. The failure might also
make itself evident through status as an alarm. The entity leaves the ERROR action state
when the action is canceled or a new action begins and the system returns to BUSY.

5.0.3 Action Model Issues
There is an important side effect of basing a control system on an action-oriented sys-
tem such as EPICS that we have become aware of in discussing command models. This
effect is shown in the following pseudo-TCL fragment.

The idea here is to send three 30 second offset commands, wait for the second to com-
plete, and then do something else.

In an action model implementation, it not possible to distinguish the second offset and it
is impossible to wait for just the second request to complete. (One could hack some
thing to compare offset status values at the scripting layer, but we believe status values
shouldn’t be used to determine command completion). This situation comes up fre-
quently. For instance, if we set a target for a slew and adjust the target while the slew is
in progress, the slew action continues until the new target is obtained.

IDLE:CL_DATA

BUSY:cl_data

MODIFIED:CL_DATAALERTED:CL_DATA

busy* alert

busy:cl_data

PAUSED:CL_DATA

pause

ERROR:CL_DATA
busy:cl_data

* Indicates spontaneous decay into a state

error

busy:cl_data

busy*

done

busy:cl_data

done

error

done

offset 30
set waitid [offset 30]
offset 30
waitfor $waitid
do {something else}



Requirements for Conforming Attribute/Value Layers

16 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

6.0 Requirements for Conforming Attribute/Value Layers

The Gemini Command Architecture is open and flexible. A Service or agent can be used
to hide the details of almost any foreign software system. However, integration with the
Gemini software system is easier if an Attribute/Value Layer is designed to work in the
Gemini software system. This section describes minimal requirements for Attribute/
Value Layers that are integral parts of the Gemini software system.

The Service Layer interface is designed to work with systems that work like EPICS.
This means:

• Systems produce status values as attributes or attribute groups that are updated asyn-
chronously. No polling should be required by the Service Layer to get values from
an Attribute/Value Layer.

• In the target system, action requests are accepted, checked for feasibility, and
acknowledged or rejected immediately. Once accepted, the target system is guaran-
teeing that the associated actions will start.

In addition, Attribute/Value Layers:

• Implement the Command Action Model.

• Produce status values and action responses.

• Use and produce control/status information that is passed as strings.

• Pass values to the Service only when those values change. It is the responsibility of
the Attribute/Value Layer to keep track of when its values change, not the Service.

ICD1b describes the EPICS Attribute/Value layer and how it should be used in the
Gemini software system.



Sequence Commands

ICD 1a The System Command Interface gscg.kkg.009/013 17 of 24

7.0 Sequence Commands

All Principal Systems are expected to respond appropriately to the following Sequence
Commands. More information on how these commands behave on an EPICS-based sys-
tem are provided in ICD 1b.

Event
(Configuration
Command)

Command
Arguments

Action/
Definition

test A system should assume it has just been switched on and perform self-
tests for its software and hardware systems to check that it is healthy. A
test could be the first step in a init following a reboot but it is not
required to be the first step. Following a test a system should be ready
to accept commands. test should not require it be followed by init or
reset.

This command completes successfully when it passes its tests or it fails
during execution and enters its ERROR state.

reboot This command causes the system to reboot (and restart EPICS if it is
an EPICS-based system). After rebooting, this system should perform
the same actions as the init command (see below).

init The system should restore itself to an initial condition, reloading ini-
tialization data. No system reboot should be performed unless that is
the only way to successfully initialize the system.

The command completes successfully when the system it determines it
is initialized or it fails during execution and enters its ERROR state.

If a system reboots as part of its init it must continue the init action fol-
lowing the reboot. This means that the init action must be set to BUSY
and then IDLE following a reboot.

datum A datum command causes a system to place its mechanisms into a state
where they can be moved reliably. For mechanisms without absolute
encoders, this typically means finding a reference point.

The command completes successfully when the system determines it
has completed reset or it fails during the process and enters its ERROR
state.

This command is not automatically performed on startup - it must be
generated from outside the system.

park A system should adopt an internal configuration in which it can be
safely switched off. This will occur at the end of an observing session
or when a principal system will enter a time of extended disuse.

The command completes successfully when the system is ready to be
powered down. This command fails if a problem is encountered while
preparing to park. It then uses the ERROR state to return the fault.

apply The apply command causes the system to match the configuration that
has been sent to it by the OCS. More details on the behaviour of this
command can be found in ICD 1b.



Sequence Commands

18 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

verify This command indicates to a principal system that verification of con-
figurations is underway by the OCS, operators, and observers. A prin-
cipal system must be capable of executing changes to its state during a
verify, and it must also update its status and state in the Status and
Alarm Database.

Interactive commands must always be accepted by a system.

This command only provides information for principal systems and
requires no special action although a system may wish to have special
actions for verify.

A principal system should successfully complete immediately after
noting the verify command.

endVerify This command indicates to a system that verification of configurations
is finished.

This command can be executed at any time.

This command only provides information for principal systems and
requires no special actions although a system may wish to have special
actions for endVerify.

A principal system should successfully complete immediately after
noting the endVerify command.

guide This command indicates to the principal systems that it should do
whatever is needed to start the guiding operation.

The command completes successfully when the guide actions have
begun successfully. The guide action state should transition briefly to
BUSY and then to IDLE once the guiding operations have begun prop-
erly and it is safe for the sequence executor to go on.

Systems that choose to ignore the guide command should go BUSY
briefly followed by the transition to IDLE.

endGuide This command indicates to all principal systems that they should stop
their guiding actions. A principal system should execute any particular
behaviour that should occur when the telescope stops guiding.

The endguide CAR action state should transition briefly to BUSY and
then to IDLE. Systems that choose to ignore the endGuide command
should go BUSY briefly followed by the transition to IDLE.

Event
(Configuration
Command)

Command
Arguments

Action/
Definition



Sequence Commands

ICD 1a The System Command Interface gscg.kkg.009/013 19 of 24

observe ObservationID This command indicates that data acquisition should begin in an instru-
ment system based on its current internal values.

Instruments executing a observe remain busy until they have com-
pleted the configured observation. The sequence executor uses comple-
tion of observe to determine when an observation completes.

The OCS uses the observe action state to determine when the integra-
tion is complete and the data is out of the instrument and in the DHS.
The observe action state must remain BUSY for this entire period. In
addition, instruments are required to update three status values corre-
sponding to the current phase of the observation. These are PREP (pre-
paring to acquire), ACQ (acquiring), and RDOUT (reading out the
detector and transferring data). These are detailed further in
Section 7.1 on page 20.

Systems other than instruments can view observe as informational.
For those systems the observe action state should transition briefly to
BUSY and then to IDLE.

The OBSERVE command argument is an identifier that should be used
by the instrument when it sends its data to the DHS. The DHS uses the
ObservationID to create the data files in a predictable way (to be deter-
mined during detailed design).

endObserve This command indicates that the configured observation has been com-
pleted. Systems may then take any steps that are needed at this point.
Instrument Control Systems typically may safely ignore this command.

pause This command indicates that a system should do whatever is appropri-
ate for it to pause data acquisition. Pause indicates to the principal sys-
tem that the user intends on continuing at a later time.

The command completes successfully when the pause actions have
begun successfully.

Systems that choose to ignore the pause command should immedi-
ately complete successfully by setting the pause action state briefly to
BUSY and then to IDLE

continue This command is the reverse of pause. A system should do whatever is
appropriate for it to resume data acquisition.

The command completes successfully when the continue actions have
taken place successfully.

Systems that choose to ignore the continue command should immedi-
ately complete successfully by setting the continue action state briefly
to BUSY and then to IDLE

Event
(Configuration
Command)

Command
Arguments

Action/
Definition



Sequence Commands

20 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

7.1 Observing Sequence

For maximum efficiency at the telescope it must be possible to configure the principal
systems efficiently. Here are some common observing situations that the OCS must be
able to sequence:

• An observation consists of a series of science frames. Between frames a filter change
is applied. The application of the filter change is faster than the read-out of the detec-
tor so the system is ready to start the next observe before the last read-out is com-
plete.

• Sometimes observers will want to move to the next observation as quickly as possi-
ble, without waiting to perform detailed quality control on previous observations. In
this case, the OCS can begin to configure the next observation while waiting for the
detector to complete its read-out.

• Some observers do care about quality control, and for some specific instruments an
apply might interfere with the detector read-out.

The common requirement in these examples is that the OCS must have more informa-
tion about what is going on in the instrument in order to sequence the observations. The
observe action response state alone does not offer enough granularity to handle the first
two cases. It must remain BUSY the entire time that the instrument is setting up, expos-
ing, reading out, and transferring data to the DHS.

To solve this problem, all instruments, both optical and IR, must maintain three status
variables corresponding to their current activities:

• PREP. This status variable is ON while the detector is preparing to acquire a science
frame. This is the period between the start of an observation and data acquisition,
and could involve an initial reset or read of the detector.

stop This command indicates that a system should stop the current data
acquisition process normally, as if it were the end of the data acquisi-
tion period.

The command completes successfully when the stop actions have
taken place successfully. Systems that choose to ignore the stop com-
mand should immediately complete successfully by setting the stop
action state briefly to BUSY and then to IDLE

abort This command indicates that a system should stop the current data
acquisition process immediately and discard any data.

The command completes successfully when the abort actions have
taken place successfully. The OCS would then notice the abort action
state briefly go through BUSY and the observe action state go to IDLE.
The recipe would then do whatever abort recovery is required.

Systems that choose to ignore the abort command should acknowledge
the command by setting their abort action state briefly to BUSY and
then to IDLE.

Event
(Configuration
Command)

Command
Arguments

Action/
Definition



Sequence Commands

ICD 1a The System Command Interface gscg.kkg.009/013 21 of 24

• ACQ. The ACQ variable is ON while the detector is acquiring science data. For an
optical detector, this is the time when the shutter is open. For IR instruments, it is the
entire period while exposures are being made.

• RDOUT. While the detector is reading out and data is being transferred to the DHS,
this variable is ON.

The OCS can use changes to these status variables to obtain finer grained control. For
instance, when the ACQ flag transitions from ON to OFF, it may possible to apply a new
configuration to the instrument, even if RDOUT is still ON.

Of course, this method simply makes overlapping the apply with the readout possible.
The observer will specify restrictions on when this may occur in the observation config-
uration using the Observing Tool. For some instruments, it may never be a good idea to
allow any activity during the readout. In this case the recipe would delay the next apply
until the endObserve action state is IDLE.

The following sections cover a few remaining details and notes.

7.1.1 All Instruments Must Adhere to the Definitions

Much of the discussion so far has tacitly assumed an optical instrument is in use. How-
ever, for IR instruments, the definitions of PREP, ACQ, and RDOUT should remain
exactly the same. ACQ should transition to ON when acquiring science data, and
RDOUT should transition to ON when reading out the detector. This implies that both
ACQ and RDOUT will be ON simultaneously for IR instruments, but this will not cause
a problem for the OCS.

Provided every instrument follows the definitions of observe, PREP, ACQ, and
RDOUT, the OCS will be able to sequence any instrument efficiently. Namely,

• PREP, ACQ, and RDOUT should each transition from OFF to ON and back to
OFF again once during an observation at the appropriate times.

Note that this rule applies even when the instrument is paused. If the OCS cannot rely
on a set pattern of transitions for PREP, ACQ, and RDOUT, then sequencing becomes
much more difficult if possible at all.

7.1.2 Obtaining Header Information

With the introduction of the ACQ status variable, the OCS now has a much more accu-
rate picture of when header information should be obtained. When ACQ goes from OFF
to ON at the beginning of the observation, the OCS can snapshot header data as close to
the actual time that shutter opens as possible. Likewise for the ON to OFF transition at
the end of the observation.

More information on the role of PREP, ACQ, and RDOUT is provided in ICD 1b.



Debugging

22 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

7.2 Sequence Command Notes

Some final notes on implementing sequence commands and future work.

Guiding Command

The guide command may not be adequate for the recipes that will run on the telescopes.
It may be necessary to introduce additional commands or modify the definition of the
guide sequence command once the interactive operations that take place to setup an
observation are a little better known. Any changes to the sequencer commands will be
under the control of the Gemini Controls Group processes and reviewed. No changes
are known or expected at this time.

Ignored Commands

All systems must implement all the sequence command opcodes. The operation of the
recipe in the sequence executor relies on responses from all principal systems. A princi-
pal system that doesn’t care about a command should indicate completion immediately
by toggling the appropriate action state to BUSY and then to IDLE.

Already There

When a system is requested to perform an action and it finds that it doesn’t need to do it
because the action is not required, it must still indicate completion immediately by tog-
gling the appropriate action state to BUSY and then to IDLE. For instance, if a filter
wheel is requested to move to position 4 and the controlling system notes that it is
already at position four, the controlling system must still toggle the action state from
BUSY to IDLE. This is true whenever any APPLY command is given.

Errors in Sequence Commands

The protocol used here defines that the only use of the ERROR state is to notify opera-
tors that an error occurred during the execution of an action. All other errors should
cause the rejection of the sequence command.

Acceptance/Rejection of Sequence Commands

A principal system has the capability of accepting and rejecting the sequence commands
when they arrive at the principal system. Rejection should occur if a system is unable to
perform the requested sequence command. For instance, if one sent an observe to an
instrument when it was reading out a detector, the instrument could reject the observe.

8.0 Debugging

8.1 Compiling Programs for Debugging

See [9] for information on compiling and linking programs that use EPICS.



Development and Test Factors

ICD 1a The System Command Interface gscg.kkg.009/013 23 of 24

See [10] for information on how to compile and link Gemini software for debugging.

8.2 Debugging Modes

A Gemini principal system or subsystem operates in any of the following debugging
modes:

• NONE — There is no debugging. The system operates normally.

• MIN — There is minimal debugging. The system (perhaps) provides a commentary
on some of its actions by means of the EPICS logging system but it does not carry
out any operation that might severely affect its performance.

• FULL — Full debugging. The system (perhaps) provides a commentary and carries
out extensive checks on its operation, which may result in a large degradation in per-
formance.

The exact meaning of the above debugging modes is the responsibility of whoever
builds the system. They may also invent further levels, as long as the three basic ones
are recognized. The commentary reported by a system running in debug mode should be
sufficiently explicit for a programmer familiar with the system to diagnose a problem.
(For example the operator may try temporarily running a faulty system in a debug mode
and report the log file to a remote programmer).

8.3 Booting and Starting

The procedures for booting and starting a VxWorks system running EPICS are
described in the Standard Controller documentation, [11], and EPICS IOC developers
guide, [9].

All Gemini systems should initialize themselves at debug level NONE and simulation
level NONE unless specifically directed to do otherwise.

Note that EPICS has the ability to reconnect an interface automatically if one of the par-
ties reboots.

9.0 Development and Test Factors

9.1 Acceptance Testing

Gemini systems must be able to run in a mode that allows their communication with
other Gemini systems to be tested. The simulator should mimic the behavior of this
interface.

9.1.1 Simulation Modes
A Gemini system or subsystem may operate in any of the following simulation modes:

• VSM — The system is to operate in ‘Virtual System Mode’ (a generalization of the
concept of the Virtual Telescope Interface). Here, actions may be initiated and
checked, but the subsystem does no further computations.



Development and Test Factors

24 of 24 gscg.kkg.009/013 ICD 1a The System Command Interface

• FAST — The system’s event processing and responses are enabled, and some inter-
nal computations may be performed, but response times are not realistic. Responses
from lower subsystems are simulated.

• FULL — Full simulation, events and responses are enabled and system responses
take realistic time. The subsystem performs all internal computations, but responses
from lower subsystems are simulated with realistic timings.

• NONE — There is no simulation. The system is to operate normally.

These modes would normally be provided as each system is developed in the order
shown here. The VSM mode provides a way for a client to check command flows and
completeness. FAST mode allows for the testing of interfaces in an integrated environ-
ment, while FULL permits the testing of a subsystem without lower subsystems operat-
ing. The VSM mode may be omitted if a system already implements the FAST mode.

NOTE: Systems should not automatically fall back into a simulation mode if their hard-
ware is not present or fails to respond. Such failures should always result in an error
unless the system is explicitly directed into a simulation mode. This rule is necessary to
ensure that simulation modes are not used accidentally, which can waste observing time.


