The Gemini Perspective on Neutron Star Mergers

Ryan Chornock (Ohio University)

on behalf of many, many others...

NSF/LIGO/Sonoma State University/A. Simonnet

GW170817

- On August 17, 2017, Advanced LIGO/Virgo triggered on a low-mass merger consistent with being a binary neutron star merger
- Followed 1.7 s later by a spatially coincident weak burst of gamma rays

LVC/Fermi/Integral

- The optical counterpart, SSS17a, was independently found by 6 optical followup teams, first by the 1M2H collaboration using the Swope
- More than 70 telescopes participated in the followup effort

LVC/EM partners 2017

What happens in a BNS merger?

What we actually see

Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics

Neutron Star Mergers

S. Rosswog

Two Emission Processes

- Optical through IR dominated by "thermal" kilonova component
- Underlying X-ray to radio power law from synchrotron emission (jet)

Kilonova components

Kasen et al. 2017

Different ejecta components will have different compositions and colors

Material with $Y_e \approx 0.23$ will experience strong *r*-process and be "red"

r-process Nucleosynthesis

- Universal abundance ratios for "heavy" r-process, more scatter for the "light" r-process
- Mounting evidence that rare, high production events are responsible for the rprocess
- Detailed BNS merger simulations reproduce the solar pattern

Based on graphic created by Jenn

Credit: Jennifer Johnson/SDSS / CC BY 2.0 (modified)

This matters for the opacity

N

 Atoms/ions with open f-shells have many more available states compared to iron-peak elements

Tanaka et al. 2018

lon	Configurations	Number of levels	Number of lines
ld I	$4f^{4}6s^{2}, 4f^{4}6s(5d, 6p, 7s), 4f^{4}5d^{2}, 4f^{4}5d6p,$	31,358	70,366,259
	$4f^35d6s^2, 4f^35d^2(6s, 6p), 4f^35d6s6p$		

Ingredient #2: Expansion

 The effects of weak lines are greatly enhanced in material with strong velocity gradients

Basic Observations of GW170817

- Very fast fading in blue, slower in near-IR
- Color temperature of ~2500K after a week
- Luminosity/timescale consistent with ~few×10⁻² M_☉ of *r*-process ejecta

Light curve fits

Normal SN material does not provide a good fit to the light curve shape or match the spectra and NIR excess

Kilonova fits

- Best-fit model has two components
 - Low opacity "blue" kilonova with ~0.01-0.02 M_☉ and v~0.25c that dominates in optical at early times
 - High opacity "red" kilonova component has ~0.04 M_☉ and v~0.1c that peaks in the NIR on longer timescales

Evidence for *r*-process

1. That there was anything at all to see in the optical/NIR!

 Some models now invoke other sources of heating at early times for the "blue" emission (e.g., shocks), but all still agree that the long-lasting IR emission requires some input heating from radioactive decay

2. Spectral energy distribution peaks near ~1 micron are a consequence of lanthanide opacity

Amazing NIR Agreement!

Chornock et al. 2017

Blue kilonova

- The blue kilonova component can only accommodate light r-process (much lower lanthanide abundances)
- But the velocities are very high (~0.3c)

Atomic number

Tanaka et al. 2018

calculations: lanthanide fraction is not really a free knob

2D kilonova simulations

Kawaguchi et al. 2018

 Reprocessing of one component by another may be very important, as is the fundamentally aspherical nature of the kilonova

Galactic nucleosynthesis

 With order-of-magnitude uncertainties, the *r*-process production in this event is about right to generate MW abundances

Present & Future

- Binary neutron star mergers produce a range of ejecta material with various compositions and velocities
- Optical and NIR observations are sensitive to different components of the ejecta
 - Spectroscopy is key, although many theoretical uncertainties in the interpretation
- What is the range of kilonova properties?
 - Intrinsic (Range of ejecta masses, nucleosynthetic outputs)
 - Extrinsic (viewing angle)
- Rapid ToO observations with Gemini will be a valuable part of this future
- Thanks to everybody at the observatory for all the work to obtain the observations of GW170817, pointing into the setting sun at twilight and up to airmass 3 for three weeks

NSF/LIGO/Sonoma State University/A. Simonnet

Backup slides

Can we actually constrain detailed abundances?

