Quenching or Bursting? Physical Processes in Green Valley Galaxies and the Star Formation Acceleration

Thiago S. Gonçalves Observatório do Valongo Universidade Federal do Rio de Janeiro

Quenching or Bursting? Physical Processes in Green Valley Galaxies and the Star Formation Acceleration

Thiago S. Gonçalves João Paulo Nogueira-Cavalcante Camila de Sá Freitas Karín Menéndez-Delmestre Chris Martin (Caltech) Behnam Darvish (Caltech) David Sobral (Lancaster) Kartik Sheth (NASA)

Bimodality in galaxy properties

The color bimodality

Willmer+06

Bimodality in galaxy properties

How is star formation quenched? AGN?

Martin+07

Bimodality in galaxy properties

How is star formation quenched? Environmental effects? Kenney+04

Steyrleithner+15

Ebeling+14

High-redshift: a different universe

Madau & Dickinson 14

The universe was forming stars more rapidly in the past

High-redshift: a different universe

Downsizing!!

Whitaker+14

The mass flux density

Spectroscopic indices to study star formation histories in galaxies

$$SFR(t) = \begin{cases} SFR(t_0) & t < t0 \\ SFR(t_0)e^{-\gamma t} & t > t0 \end{cases}$$

The mass flux density in the green valley and the evolution of the red sequence agree

Absorption lines in r~24 galaxies => NEED 8-10m telescopes!

Galaxies move through the green valley faster at z~0.8

Gonçalves+12

Mass flux density happens in fainter, less massive galaxies in recent times

Gonçalves+12

"Top-down scenario for the evolution of the red sequence:

Massive red galaxies are formed early from the quenching of massive starforming objects

The process then evolves to low-mass galaxies in the local universe

Downsizing of quenching!

Evolution of the CM diagram

Quenching as a function of morphology

Quenching as a function of compactness

Compact galaxies quench faster!

Comparison with Illustris simulation: stronger feedback

Nogueira-Cavalcante, TSG, +18b, submitted

What if we use realistic SF histories? Can we recover physical parameters?

Martin, TSG +17

Stellar Population models

Mass, Z, SFH, etc.

Can we recover physical parameters?

Can we recover physical parameters? Yes we can!

Martin, TSG +17

Linear regression on photometry and spectroscopic indices

We can now detect quenching X bursting

Freitas, TSG in prep.

Conclusions

Galaxies are bimodal, fast quenching of star formation

Different processes at high-z, faster quenching, downsizing

Slower quenching in (barred) spirals, faster quenching in AGN hosts