

GPI: things that worked

- Dedicated, effective team has been crucial to GPI productivity (in both commissioning and campaign)
 - Strong collaboration with observatory
- Well-constructed and validated data pipeline
- High-quality optics and stable structure
- Efficient top-level software
- Extensive archiving of data and metadata
- Flexible interfaces and scripting
- MEMS deformable mirror

- Lack of EMCCD hurts faint-star performance (I=10 mag)
- Environmental testing is often too optimistic
 - Therefore, computation times / frame rate are critical
- Should have included a ND filter!
- Idealized picture of observatory software differs from reality
 - Software development stalls at 'good enough'
 - GPI queue utilization limited

GPI performance

Bad conditions dominated by jet stream – Madurowicz et al 2018

Dome seeing also degrades performance

Integrated contrast model

GPI Relocation

Developing science cases relevant to 2020-2025

- 1. Emphasize GPIs strengths: reliable, efficient operation
- 2. Quantify science requirements -> practical design
- 3. Complement Subaru and Keck capabilities

Science Cases	WFS I mag limit	Inner working angle	Contrast Improvement
Large Scale Survey / Cold-start planets	10	0.15	2+ mag
Very young stars + transitional disks	13 (or IR WFS)	0.1"	0
Spectropolarimetry	7	0. ¹⁵ "	1% polarimetry
Low-mass Stars	13	<u>0 1"</u>	
Asteroids & Solar System Objects	14	-	0
Debris Disks	9	0.2"	0
Planet Variability & abundance characterization	6	0.2″	1% photometry, high-res spectroscopy feed

"Cold start" planets

Detecting cold-start planets

Younger planets: Taurus

Closest active planet formation? 140 pc, 1-2 Myr Requires I~13 mag or IR WFS Desirable: <0.1" IWA

- High spectral resolution could determine rotational velocity (Snellen et al 2014) and abundances (Konopacky et al 2013)
- Fiber-feed offbench spectrograph
- Optimal resolution
 unclear

- Rotating planets could be variable at the 1% level
- Combined with high spectral resolution could map out cloud structure
- Are there enough photons?

Luhman 16B (Crossfield et al)

Build on GPI and observatory's strengths – reliability, data pipeline, survey and monitoring capability

- AO: pyramid sensor + 2 kHz + predicive control?
 - I=13 mag limit
 - 2-4x better contrast close to star
- IFS
 - One-shot JHK R~15 mode
 - SpecPol mode
- Highres spec mode
 - Fiber-fed R=4,000 or 70,000?

Coronagraph

- High-throughput broadband mode for surveys and variability
- Small IWA mode for distant targets
- Mask M2 bumps?

Calibration

- Modulated ref spots
- Fast IR APD camera for imaging and focal-plane WFS (selfcoherent, Gerard et al 2018)
- Precorrect for M2 bump aliasing