GNIRS & the Distant Universe

Gemini Science Meeting 2012 July 20, 2012

Mariska Kriek (UC Berkeley)

Pieter van Dokkum (Yale) Adam Muzzin (Leiden) Rachel Bezanson (Yale) & the MUSYC collaboration

Star formation history of the Universe

Mariska Kriek

Gemini Science Meeting

Why is GNIRS the ideal instrument to observe galaxies at z=2-3?

Mariska Kriek

Typical massive galaxy at 2<z<3 is red

- Optically red
 - ► J-K = 2.48
 - ▶ (U-V)₀=0.62
- Faint in the observed optical
 - ► R_{AB} = 25.9

van Dokkum et al. 2006

Beyond the limits of optical spectroscopy

Mariska Kriek

Gemini Science Meeting

Typical massive galaxy at 2<z<3 is red

- Optically red
 - ► J-K = 2.48
 - ▶ (U-V)₀=0.62
- Faint in the observed optical
 - ► R_{AB} = 25.9

van Dokkum et al. 2006

Beyond the limits of optical spectroscopy

Typical massive galaxy at 2<z<3 is red

- Optically red
 - ► J-K = 2.48
 - ▶ (U-V)₀=0.62
- Faint in the observed optical
 - ► R_{AB} = 25.9

van Dokkum et al. 2006

Beyond the limits of optical spectroscopy

Mariska Kriek

Gemini Science Meeting

Full near-infrared wavelength coverage

Mariska Kriek

Gemini Science Meeting

Targeted lines for $z \approx 2.3$

Figure from A. Shapley

A GNIRS Survey for massive galaxies at $z \approx 2.3$

- Selection:
 - MUSYC survey: UBVRIzJHK photometry
 - ► K_{vega} < 19.7
 - ▶ 2 < z_{phot} < 3
- Total sample: 36 galaxies
- Follow-up: SPITZER/IRAC, SPITZER/MIPS, Magellan/ LDSS3, HST/NICMOS, Keck/NIRC2-AO
- Fully reduced spectra and data products available at: www.astro.berkeley.edu/~mariska

Examples of emission line spectra

Kriek et al. (2007)

Mariska Kriek

Gemini Science Meeting

Gemini Science Meeting

Gemini Science Meeting

Mariska Kriek

Gemini Science Meeting

Kriek et al. (2008)

Mariska Kriek

Gemini Science Meeting

- 8 galaxies at z < 2
- 28 galaxies at 2 < z < 3

Overview

- 8 galaxies at z < 2
- 28 galaxies at 2 < z < 3
 - I Galaxies without detected emission lines

Galaxies without detected emission lines

Kriek et al. (2006)

Galaxies without detected emission lines

Kriek et al. (2006)

Continuum redshifts

Mariska Kriek

Gemini Science Meeting

Overview

- 8 galaxies at z < 2
- 28 galaxies at 2 < z < 3
 - I Galaxies without detected emission lines
 - I7 Emission line galaxies (see Kriek et al. 2007)

Emission line galaxies: AGN or star forming?

Mariska Kriek

Gemini Science Meeting

July 20, 2012

Kriek et al. (2007)

Overview

- 8 galaxies at z < 2
- 28 galaxies at 2 < z < 3
 - I Galaxies without detected emission lines
 - I7 Emission line galaxies
 - 12 star-forming galaxies
 - 5 AGN host galaxies

A Red Sequence at $z \approx 2.3$?

Kriek et al. (2008)

Gemini Science Meeting

Red Sequence Galaxies at $z \approx 2.3$

Kriek et al. (2008)

Massive galaxy distribution at z \approx 2.3

Mariska Kriek

Gemini Science Meeting

Massive galaxy distribution at z \approx 2.3

Mariska Kriek

Gemini Science Meeting

Morphologies of massive, quiescent galaxies at $z \approx 2.3$

van Dokkum et al. (2008)

Structural evolution from $z \approx 2.3$ to the present

van Dokkum et al. (2008)

Inside-out growth

Inside-out growth due to minor mergers?

Inside-out growth due to minor mergers?

Mariska Kriek

Gemini Science Meeting

July 20, 2012

Bezanson et al. (2009)

29 hrs GNIRS spectrum of a quiescent galaxy at z=2.2

Mariska Kriek

Gemini Science Meeting

29 hrs GNIRS spectrum of a quiescent galaxy at z=2.2

Mariska Kriek

Gemini Science Meeting

July 20, 2012

Kriek et al. (2009)

A high velocity dispersion for at z=2.2 galaxy

Mariska Kriek

Gemini Science Meeting

Comparison to local galaxies

Mariska Kriek

Gemini Science Meeting

July 20, 2012

van Dokkum et al. (2009)

Comparison to local galaxies

van Dokkum et al. (2009)

Compilation of different dynamical galaxy studies

van de Sande, Kriek et al. in prep

Are compact quiescent galaxies disk dominated?

Mariska Kriek

Gemini Science Meeting

July 20, 2012

van der Wel et al. (2011)

Resolved kinematics

Mariska Kriek

Gemini Science Meeting

Resolved kinematics

Mariska Kriek

Massive galaxy distribution at z \approx 2.3

Mariska Kriek

Gemini Science Meeting

Massive galaxy distribution at $z \approx 2.3$

Mariska Kriek

Gemini Science Meeting

Scaled up cool galaxies at z \approx 2.3

Mariska Kriek

Gemini Science Meeting

24 micron as SFR indicator

Mariska Kriek

24 micron as SFR indicator

Mariska Kriek

Problems GNIRS z~2.3 galaxy survey

- Photometric properties of parent galaxy sample poorly constrained
- Limited area of photometric survey
- Sample biased to the brightest galaxies
- Limited ancillary data

The NEWFIRM Medium-Band Survey

Mariska Kriek

Gemini Science Meeting

Gemini Science Meeting

Mariska Kriek

Gemini Science Meeting

Spectral features

Mariska Kriek

Gemini Science Meeting

July 20, 2012

Kriek et al. (2011)

Galaxy properties as a function of spectral type at $z \approx 1.5$ With GNIRS, FIRE and NIRSPEC

Star formation, metallicities, dust, active galactic nuclei

Mariska Kriek

Gemini Science Meeting

What have we learned using GNIRS?

- Galaxy population at $z \approx 2.3$ is quite diverse
- A red sequence of quiescent galaxies was already in place beyond z=2
- Massive quiescent galaxies at $z \approx 2.3$ are much more compact than their local analogs
- Massive star forming galaxies at z ≈ 2.3 are scaled up cool galaxies and have large irregular larger morphologies