

GEMINI HIGH-RESOLUTION OPTICAL SPECTROGRAPH (GHOST) INSTRUMENT OVERVIEW ANDY SHEINIS: HEAD OF INSTRUMENTATION, AAO

Gemini, Magellan, Keck Symposium May 2015

- 2011: CoDR proposals
- mid-2012: A CoDR in Hilo, including both AAO and NRC-Herzberg. AAO's bid included Kiwistar Optics as the primary subcontractor.
- mid-2013: After many miscellaneous delays, Kiwistar optics decided to change their business model and not participate in GHOST. A new team was formed with NRC-Herzberg (ex-HIA, Victoria, Canada). YAY NRC!
- April 2014. Preliminary design begins.
- Dec 2014 AAO/ANU/NRC pass the PDR (first successful PDR at Gemini in 10 years) Long lead item order start.
- CDR/FDR Dec 2015
- Dec 2016 Build & Integration completed
- May 2017 Pre-shipping acceptance test completed –
- July 2017 Shipping to Gemini
- Sep 2017-Commissioning starts
- Semester 2, 2018- Full science

Australian National University

INTERNATIONAL CONTEXT

GHOST is (mostly) not unique. There are other high-resolution spectrographs in the world, all of which are in high demand none of which (except GRACES?) are accessible to the Gemini community. GHOST must have high efficiency (throughput and observational efficiency) and cover a broad range of science.

Gemini, Magellan, Keck Symposium May 2015

GHOST is a Partnership!

gineers: OE=Optics, SE=Systems, PE=Project, DR=Data Reduction, DE=Detector, SW=Software, ME=Mechanical, IE=Instrumentation, EE=Electrical

Gemini, Magellan, Keck Symposium May 2015

"Science Cases"

- 17 Science cases in the "Concept of Operations", derived from white papers.
- Mostly abundances (e.g. metal-poor stars, GAIA follow-up, cool dwarfs, clusters). Mostly <900nm.
- Two polarimetric science cases (magnetic fields etc)
- Exoplanets added by AAO (2m/s, primarily transit follow-up).
- The only extragalactic cases are varying constants in the Universe and GRB follow-up (ToO, also added by AAO).
- About half the science cases had more than 1 object per 7 arcminute field of view.

Ghost is driven By the science needs of the Community

Science Req.	1001:	1002:	1003:	1004:	1005.	1006:	1007:
	Wavelen.	Res.	Mag.	Obj./	RV	Obj.	Polarim
Science Case	range (nm)		Limit	field	prec.	type	etry
Stellar chemistry in	380-1000	30k +45k	16	1	200	Point	n/a
stars with planets						source	
Galactic structure	350-930	35k	17	1	200	Point	n/a
	310-930					source	
Extremely metal-poor	390-1000	15-40k	18	>1	200	Point	n/a
stars						source	
Extreme metal-poor	360-960	20-60k	19	>1	200	Point	n/a
stars in dwarfs						source	
Abundance studies of	390-860	20-30k	19	>1	200	Point	n/a
extra-galactic GCs						source	
Globular cluster studies	350-800	30-60k	19	>1	200	Point	n/a
						source	
Cool dwarfs	500-1000	30-60k	18	1	200	Point	n/a
						source	
Astrophysics with open	390-777	45-100k	14	>1	200	Point	n/a
clusters	+300-1000					source	
Dwarf galaxy shapes	520	20k	n/a	1	200	Extended	n/a
						object	
Nucleo-chronometry of	330-870	60k	12	1	200	Point	n/a
the oldest stars						source	
MW assembly history	330-870	20-40k	19	>1	200	Point	n/a
via dwarf galaxies	+420-700					source	
GAIA Follow-up	450-700	40k	17	>1	200	Point	n/a
						source	
Magnetic Fields in Star	380-1000	50-100k	11	>1	200	Point	yes
Formation/ exoplanets						source	
Precision	390-1000	50-100k	11	1	200	Point	yes
spectropolarimetry						source	
Exoplanets	400-900	75k	19	>1	2-50	Point	n/a
						source	
Varying constants	400-900	75k	17	1	10	Point	n/a
						source	
GRB spectroscopy	400-900	40k	14	1	200	Point	n/a
							and the second

Science flows down to instrument requirements! Canada

Science	REO_1000		Science		MC CMC
Science	REQ-1000	Wavelength range	GHOST shall provide simultaneous wavelength	Science white papers	
			coverage from 363 nm to 1000 nm.		363nm – 1000nm
Science	REQ-1002.01	Spectral resolution	GHOST shall have two selectable spectral resolution modes: standard resolution mode with R>50,000 and high resolution mode with	Science white papers	R=50,000 and R=75,000
Science	REQ-1003.02	Sensitivity	GHOST shall obtain a sensitivity of Vega mag=18.0 in a 1 hour observation for 30 sigma per resolution element in standard resolution mode in dark time (50th sky brightness percentile) at the order centre closest to a wavelength of 450 nm.	Science white papers	Limiting magnitude = 18 at 450nm 30 sigma per resolution element
Science	REQ-1004.02	Targets and field size	GHOST shall have the capability to observe 2 targets simultaneously over a 7.5 arcmin diameter field of view (in low resolution mode).	Science white papers	2 objects over 7.5 arcmin field
Science	REQ-1005.02	Radial velocity precision	GHOST shall provide a radial velocity precision of 200 m/s over the full wavelength range in standard resolution mode and shall have the capability to provide a radial velocity precision of 10 m/s (goal 1m/s) over the wavelength range from 430nm to 750nm in the high spectral resolution mode.	Science white papers	PRV = 10 m/s (2m/s goal)
Science	REQ-1006.01	Spatial sampling	GHOST shall spatially sample each target object over a field size of 1.2 arcsec.	Science white papers	Spatial sampling = 1.2 arcsecs
Science	REQ-1007.02	Spectro-polarimetry	GHOST shall have provision for future implementation of a spectropolarimetric capability that can measure the Stokes V parameter	Science white papers	Spectropolarimetry options future

object over a field size of 1.2 arcsec.

parameter.

GHOST shall have provision for future

implementation of a spectropolarimetric capability that can measure the Stokes V

363nm - 1000nm R=50,000 and R=75,000 Limiting magnitude = 18 at 450nm 30 sigma per resolution element 2 objects over 7.5 arcmin field PRV = 10 m/s (2m/s goal)Spatial sampling = 1.2 arcsecs

Spectropolarimetry options future

Science

REQ-1007.02

Spectro-polarimetry

Science white papers

GHOST Throughput

Adapted from Chene et al. 2014

Cassegrain Component

Gemini, Magellan, Keck Symposium May 2015

Less glass =high throughp

Lenslet-Based IFU

Image stability: Pupil imaged onto Fiber face Fiber face imaged onto grating

Microlens 2

Fiber

Microlens 1

- Telecentric Fiber Injection. f/16 input, nominal 250 micron lenslet pitch (0.41" flat to flat for a hexagonal array)
- Microlens 1: Hexagonal. Microlens 2: Circular in Hex grid.
- Fiber has ~56 micron core.
- Input optics image telescope pupil on to the fiber face.
- Output is the same: *imaging the fiber face onto the grating* essential for PSF stability.

Australian National

Jniversitv

Sky availability and ThAr injection = image stability

- Some sky is always available, even in 2-object mode.
- Separation between orders is tight (<3 pix) only for the bluest few orders of each detector

Instrument Overview

INSTRUMENT DESCRIPTION

Figure 62 - Red camera spot diagram (boxes are 2 pixels, order width is 1.12xFSR)

Figure 61 - Blue camera spot diagram (boxes are 2 pixels, order width is 1.12xFSR)

Gemini, Magellan, Keck Symposium May 2015

Detectors(NRC-Herzberg)

- The detectors were ordered at the end of April, so the science devices are expected at 12 months (or earlier) for the blue 4kx4k, and 15 months (or earlier) for the red 6kx6k.
- The blue device is standard thickness silicon, with the thin-astromulti2 multi-layer coating (which gives a boost approx 360-400nm).
- The red device is deep-depletion silicon, with the regular astromulti2 multi-layer coating.

Figure 216 - e2v QE curves for standard silicon at -100 °C

Figure 52 - Measured Efficiencies for the candidate échelles (Richardson Gratings Lab)

BS coatings

Preliminary Dichroic Performance (Materion)

Figure 66 - predicted transmittance for the blue and red cameras

[°]mini, Magellan, Keck Symposium May 2015

GHOST design features \rightarrow advantages

- Focal-plane image-slicing \rightarrow scale hence cost saving.
- Microlens-based IFUs \rightarrow compact and high throughput.
- Miniature-ADCs \rightarrow enhanced blue throughput.
- Dual slits and multiple-IFUs \rightarrow enabling high resolution mode.
- Multi-object positioning system \rightarrow double throughput for some science.
- Broadspectrum optical fibers \rightarrow high throughput all wavelengths.
- Asymmetric white-pupil Echelle spectrograph \rightarrow compact hence cost saving.
- Two-arm spectrograph design \rightarrow high throughput over broad bandwidth.
- VPH grism cross-dispersers \rightarrow high throughput.
- A&G camera \rightarrow obviates OIWFS cost and complexity.
- Simultaneous wavelength calibration + slit viewing \rightarrow high radial velocity precision.
- Future Polarisation mode \rightarrow allows spectropolarimetry.

HIGH THROUGHPUT, ENHANCED FUNCTIONALITY, AND LOW COST

GHOST design features \rightarrow **low risk design**

- Focal-plane image-slicing \rightarrow used in CYCLOPS.
- Microlens-based IFUs \rightarrow used in MANIFEST and KOALA.
- Miniature-ADCs \rightarrow modular design using small optics.
- Dual slits and multiple-IFUs \rightarrow 1 additional mechanism.
- Multi-object positioning system \rightarrow using COTS stages.
- Broadspectrum optical fibers \rightarrow used in the SAMI and thoroughly tested.
- Asymmetric white-pupil Echelle spectrograph \rightarrow many instances, .
- VPH grism cross-dispersers \rightarrow HERMES experience.
- Slit-viewing camera \rightarrow COTS detector and small optics, + low cost custom
- Simultaneous wavelength calibration \rightarrow used in CYLCOPS2.
- Polarisation mode \rightarrow COTS components.

GHSSI

AAO, HIA, ANU Looking forward to building GHOST over the next ~3 years!

"Science Cases"

- 17 Science cases in the "Concept of Operations", derived from white papers.
- Mostly abundances (e.g. metal-poor stars, GAIA follow-up, cool dwarfs, clusters). Mostly <900nm.
- Two polarimetric science cases (magnetic fields etc)
- Exoplanets added by AAO (2m/s, primarily transit follow-up).
- The only extragalactic cases are varying constants in the Universe and GRB follow-up (ToO, also added by AAO).
- About half the science cases had more than 1 object per 7 arcminute field of view.

	CCD231-84	CCD231-C6
Number of pixels	4096 (H) × 4112 (V)	6144 (H) × 6160 (V)
Pixel size	15 μm	15 μm
Total image area	61.4 mm × 61.4 mm	92.2 mm × 92.4 mm
Outputs	4	4
Flatness	< 20 µm (peak to valley)	$<$ 40 μ m (peak to valley)
Amplifier sensitivity	7 μV/e-	7 μV/e-
Read noise	4.0 e- at 500 kHz	4.0 e- at 500 kHz
	2.0 e at 50 kHz	2.0 e- at 50 kHz
Full well	200,000 e-	200,000 e-
Dark current	3 e/pixel/hour (at -100 °C)	3 e/pixel/hour (at -100 °C)
Charge-transfer	0.999995 (parallel)	0.999995 (parallel)
efficiency	0.999995 (serial)	0.999995 (serial)
Readout time	45 seconds (100 kpix/s)	90 seconds (100 kpix/s)
	25 seconds (200 kpix/s)	45 seconds (200 kpix/s)
Package	Silicon carbide	Silicon carbide
Price	\$140,000 USD	\$236,000 USD
Delivery	up to 12 months	up to 15 months

Gemini, Magellar

Polarimetry Two science cases requested a polarimetric mode (Magnetic • fields in star formation/exoplanets, and precision spectropolarimetry) – an expansion option.

MULTI-IFU OBSERVING GAIN

3.2.4 Objects and Field Size

Table 4. Objects and field size requirements for multi-object science cases

Number of objects per 7	' field Science case subsections	
1-2	EMP stars in dwarf galaxies	
1-6	Dwarf galaxies	
10	Magnetic fields in star formation	
10	Extremely Metal-Poor Stars	
3-50	Galactic Globular Clusters	
>50	Extragalactic Globular Clusters	
1 to >100	Galactic Open Clusters	
1 to >100	Exoplanets	
100	GAIA follow up	

Table 4 provides the typical number of objects per GHOST field of view for the identified science

and

Two-IFU gain factor is typically 1.5 - 2

study will also benefit. We have identified >30% of science cases would use such a mode, which provides substantial gains (i.e., it is as favorable as doubling the throughput).

We thus derive the following science requirement:

REQ-1004

GHOST shall have the capability to observe 2 targets simultaneously over a 7.5 arcmin diameter field of view.

HARPS is super-expensive and performs very well. The new kids on the block ESPRESSO, PFS, APF... even NRES promise to have their ultra-precise RV niches. Given that PRV almost always compromises efficiency, there is little room for GHOST to directly compete. But there is so much PRV work going on, surely there is room for GHOST PRV...

Gemini, Magellar 27 co sium May 2015

bHROS format - not useful

Gemini has not had a high-resolution spectrograph due to the Cassegrain design... bHROS had 2 critical flaws: Low blue throughput Very limited spectral range

Abundances

- Metal poor stars (individual, in dwarf Galaxies, in Globular clusters, for Nucleo-Chronometry) made up 5 of the 17 science cases. 5 other abundance cases
- Resolution *requirement* is modest (~30,000), but EW S/N improves as R^{1/2} for

photon-limited (i.e. high

S/N) observations up to

R~50,000.

Right: the "oldest star" discovered by Keller et al, 2014

Gemini, Magellan, Ke

Exoplanets

- Exoplanet science is a fast-moving target...
- Since 2011, the Transiting Exoplanet Survey Satellited (TESS) mission has been proposed and accepted. This will require *lots* of radial velocity follow-up, with a ~2m/s velocity requirement over ~month or smaller timescales.
- Transit spectroscopy is also frequently used exoplanet techniques.

INSTRUMENT DESCRIPTION TABLE 20 (GHOSD-06)

GHOST Spectrograph Parameters				
Wavelength range	363 nm – 1000 nm			
Échelle Grating	Richardson Grating Labs 424E, master MR234			
	65 degrees blaze (R2)			
	gamma = 0.56 degrees			
	G= 52.67 grooves/mm			
	Ruled area: 204mm x 410mm			
Collimator	1750.6mm f.l. @ f/10			
	175.7mm beam diameter at échelle			
White pupil magnification	0.41			
Beam Splitter	Cut on wavelength: 529.4nm (center of order 65)			
	Order Overlap: ±2.5 orders			
	Reflection Band:			
	R > 97% (goal 99%) from 360nm to 514nm			
	Transmission band:			
	R > 96% (goal 98%) from 545nm to 1000nm			
	Substrate: N-BK7HT 160mm x 130mm x15mm			
Cross dispersers	Blue: 1137 G/mm VPHG, Alpha = 30 degrees			
	Red: 565 G/mm VPHG, Alpha = 30 degrees			
	Substrate: Fused Silica 127mm x 127mm x 10mm x 2			
	Beam Diameter at Cross disperser: 72mm			
Blue Camera	Orders: 95 to 63			
	Minimum order width: 1.12 x FSR			
	wavelength range: 360nm to 551nm			
	field of view: 17 degrees			
	focal length: 265mm			
	(CCD: 4kx4k pixel detector area, 15 µm pixels)			
Red Camera	Orders: 67 to 34			
	Minimum order width: 1.12 x FSR			
	wavelength range: 509nm to 1000nm			
	field of view: 29 degrees			
	focal length: 265mm			
	(CCD: 6kx6k pixel detector area on 15 μm pixels)			
Gemi				

