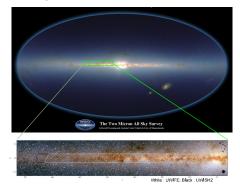
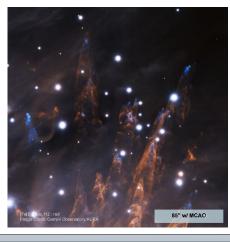
UKIRT Widefield Infrared Survey for Fet

Jae-Joon Lee

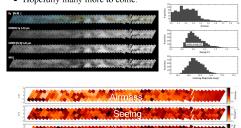

Korea Astronomy and Space science Institute

Abstract

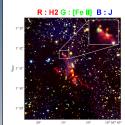
The United Kingdom Infrared Telescope (UKIRT) Widefield Infrared Survey for Fe+ (UWIFE) is a 180°2 imaging survey of the first Galactic quadrant $(7^* < 1 < 62^*; |b| < 1.5^*)$ using a narrow-band filter centered on the [Fe II] 1.644 um emission line. The [Fe II] 1.644 um emission is a good tracer of dense. shock-excited gas, and the survey will probe violent environments around stars; star-forming regions, evolved stars. and supernova remnants, among others. The UWIFE survey is designed to complement the existing UKIRT Widefield Infrared Survey for H₂ (UWISH2: Froebrich et al. 2011). The survey will also complement existing broad-band surveys. We present the overview and preliminary results of this survey and our follow-up effort with Gemini telescopes.


UWIFE in brief

- Unbiased
- near-infrared, narrow-band (1.64 um [Fe III)
- · imaging survey
- of the First Galactic Quadrant $(7^{\circ} < 1 < 65^{\circ}; -1.5^{\circ} < b <$ +1.5°)


[Fe II] & H₂

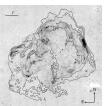
- [Fe II] lines trace the dense atomic gas
- H₂ lines trace the dense molecular gas
- [Fe II] produces a wealth of lines across the NIR band, allowing us to measure the various gas properties (e.g., extinction, excitation T, electron density).

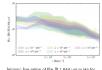


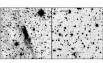
Survey Status

- Observations were conducted w/ UKIRT during 2012 and 2013
- 1 tile ~ 50' x 50'
- 1 hour / tile
- · 220 tiles finished
- The survey is completed and all data is publicly available.
- The survey paper is published (Lee et al., 2014; MNRAS 443, 2650)
- The first science paper is published (Shinn et al., 2014)
- · Hopefully many more to come.

Gallery

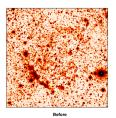

- [Fe II] emission are detected from jets/outflows around YSO, planetary nebulae and supernova remnants.
- [Fe II] emission, especially in YSO jets, are knoty and often barely resolved.
- Also detected are numerous unidentified sources.

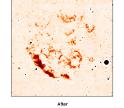




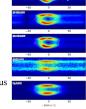
[Fe II] vs. Hα

- In typical shock conditions, Ha is intrinsically brighter than [Fe II] by factor of $3 \sim 30$.
- Extinction makes [Fe II] look brighter! $(Av > 6; N_u = 10^{22} \text{ cm}^{-2})$





Cont. Subtraction


• Proper continuum subtraction is essential to reveal faint diffuse emission.

Follow-ups

- · Narrow band AO imaging w/ Gemini
- o NIRI (GN) observations in next
- o Ideally targets for GEMS GSAOI (GS)
- · High-spectral resolution NIR spectroscopy
- o IGRINS; R=40,000 w/ simultaneous coverage of H & K
- McDonald 2.7m telescope

