Supernovae flash spectroscopy: a new window into stellar death

Avishay Gal-Yam Weizmann Institute Of Science FSG, Toronto 2015

Realtime Time-Domain Science

Based on manuscripts Gal-Yam et al. 2014, Nature Yaron, Perley et al. 2015; Ganot et al. 2015; Rubin et al. 2015

It is now prime time to think about science at day 1

- Shock breakout
- Multiwavelength
- World networks
- Neutrino and GW coincidence
- Flash spectroscopy

The Palomar Transient Factory (PTF) found some SNe very early

iPTF can find optical transoients as they happen!

iPTF is even better!

What will we see?

Early UV data can directly constrain progenitor and explosion properties

We can recover the pre-explosion radius R* and explosion energy per unit mass from observations: UV risetime and peak mag

Early optical data: useful

Flash spectroscopy

W-R star (example)

Hydrostatic surface (<10¹²cm)

Opaque (optically thick) wind (up to $\sim 10^{13}$ cm)

Optically thin wind W-R emission lines

Flash spectroscopy (2)

W-R star explosion (example)

Infant supernova, orders of magnitude brighter

Opaque (optically thick) wind (up to ~10¹³cm; wind breakout; Ofek et al. 2010 ...)

Optically thin wind W-R-like emission lines

Timescales

Massive star explosion (example)

Shock breakout flash: minutes to hours

Recombination time: minutes. Wind reacts to SN spectrum instantly. Light-crossing time of wind (hours) may smear spectral evolution.

Moving at 10000 km/s, SN ejecta reach $\sim 5 \times 10^{13}$ cm in a day, flash spectrum gone within days of explosion.

Example: iPTF13ast

iPTF13ast: WN(h) wind

iPTF13ast: wind properties

Hα line: R>2 10¹⁴cm

Line evolution: R<7 10¹⁴cm

Mass loss>0.03 solar mass/year

Total mass<0.01 solar

iPTF13ast: WN(h)-like progenitor of a SN IIb

ID of a SN progenitor (via surface composition) at 108 Mpc WN(h)-like composition for an SN IIb consistent with other data (SN 2008ax) and what you'd expect (<0.1 solar total H mass)

What does WN(h)-like mean?

- Flash spectroscopy constrains the progenitor wind composition, and by association its surface composition
- Line profile analysis may be able to also probe wind velocity and hence escape velocity and progenitor radius
- For iPTF13ast, the composition is similar to a WN(h) star, but with an optically thick shell at 10¹⁴ cm, it will no look like a compact WR star. Indeed, line profiles suggest slow wind and hence supergiant (and cool) rather than compact progenitor (Shivvers et al.; Groh et al.)
- Indications for recent and enhanced mass loss may suggest a compact WR star that expands prior to explosion (fits some recent predictions)

iPTF13dqy: a second nearby event

Type II SN in NGC 7610 (50 Mpc)

Redefining "good coverage"

iPTF13dqy: early spectral evolution

iPTF13dqy: later spectral evolution

iPTF13dqy: SN II-P

iPTF13dqy: multicolor photometry

iPTF13dqy: starting hot

iPTF13dqy: starting hot

iPTF13dqy: bolometrics

Not all SNe show flash spectra

But many do ... these are not atypical stars

Implications

- iPTF13ast: IIb with WNh-like progenitor
- In general: classify W-R explosions (or any SN progenitor with CSM)
- Easily done to >100 Mpc, potential is >100 SN/y
- (Many? Some?) massive stars have increased mass loss during their terminal year
- Core instability (Shiode & Quataert)?

The Gemini impact

The UV is a very attractive place to go to

SEDM: flash spectroscopy machine: getting the smaller W-R stars

Future: ZTF and ULTRASAT

Take home message

First-day SN observations will:

- Provide new information about massive stars, as they explode
- Define a new set of initial conditions for computational massive star explosion models, and
- Provide a definite observational benchmark to test model predictions

The Palomar Transient Factory (PTF) found some SNe verv early

