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Exoplanet characterisation!
Fundamental Questions We Would Like to Answer

• Nature and physical properties of planetary systems 
detected? (test planetary physics in new regimes)!

• Planetary formation: where and how planets form? !

• Study of a new class of astronomical objects: what are 
the family of properties?!

• How they compare to the Solar-System?!

• Developing the tools to study Earth analogs
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.

Table 2. Spectroscopically derived stellar atmospheric parame-
ters for HD 209458 and HAT-P-1.

Property HD 209458 HAT-P-1
Hayek et al. (2012) Torres et al. (2008)

Teff , K 6095 ± 53 5975 ± 120
log g, cms−2 4.30± 0.09 4.45± 0.15
[Fe/H], dex 0.00± 0.04 0.13± 0.08

Initially, the values for the four limb darkening coef-
ficients were derived from the 1D ATLAS theoretical stel-
lar models of Kurucz8, following the procedures described
in Sing (2010). In particular, we obtained theoretical limb
darkening coefficients for the closest match to a star with
the physical properties of HAT-P-1, i.e. Teff = 6000 K,
log g = 4.5 and [Fe/H] = 0.0. Previous analyses on high
signal-to-noise transit light curves with limb darkening co-
efficients derived from 1D model predictions sometimes re-
sulted in poor fits, especially in the ingress and egress phases
of the transit, which is characteristic of incorrect limb dark-
ening (Hayek et al. 2012). The main reason for this issue
lies in a generic shortcomings in the structure of 1D model

8 http://kurucz.harvard.edu/

atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.

Table 2. Spectroscopically derived stellar atmospheric parame-
ters for HD 209458 and HAT-P-1.
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darkening coefficients for the closest match to a star with
the physical properties of HAT-P-1, i.e. Teff = 6000 K,
log g = 4.5 and [Fe/H] = 0.0. Previous analyses on high
signal-to-noise transit light curves with limb darkening co-
efficients derived from 1D model predictions sometimes re-
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of the transit, which is characteristic of incorrect limb dark-
ening (Hayek et al. 2012). The main reason for this issue
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.
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are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
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sections.

Previous STIS data analyses showed that the first in-
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2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
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incorporating an additional 1 s long exposure prior to the
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two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
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Huitson et al. 2012). We attempted to resolve this issue by
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.

Table 2. Spectroscopically derived stellar atmospheric parame-
ters for HD 209458 and HAT-P-1.

Property HD 209458 HAT-P-1
Hayek et al. (2012) Torres et al. (2008)

Teff , K 6095 ± 53 5975 ± 120
log g, cms−2 4.30± 0.09 4.45± 0.15
[Fe/H], dex 0.00± 0.04 0.13± 0.08

Initially, the values for the four limb darkening coef-
ficients were derived from the 1D ATLAS theoretical stel-
lar models of Kurucz8, following the procedures described
in Sing (2010). In particular, we obtained theoretical limb
darkening coefficients for the closest match to a star with
the physical properties of HAT-P-1, i.e. Teff = 6000 K,
log g = 4.5 and [Fe/H] = 0.0. Previous analyses on high
signal-to-noise transit light curves with limb darkening co-
efficients derived from 1D model predictions sometimes re-
sulted in poor fits, especially in the ingress and egress phases
of the transit, which is characteristic of incorrect limb dark-
ening (Hayek et al. 2012). The main reason for this issue
lies in a generic shortcomings in the structure of 1D model
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.
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sections.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.

Table 2. Spectroscopically derived stellar atmospheric parame-
ters for HD 209458 and HAT-P-1.

Property HD 209458 HAT-P-1
Hayek et al. (2012) Torres et al. (2008)

Teff , K 6095 ± 53 5975 ± 120
log g, cms−2 4.30± 0.09 4.45± 0.15
[Fe/H], dex 0.00± 0.04 0.13± 0.08

Initially, the values for the four limb darkening coef-
ficients were derived from the 1D ATLAS theoretical stel-
lar models of Kurucz8, following the procedures described
in Sing (2010). In particular, we obtained theoretical limb
darkening coefficients for the closest match to a star with
the physical properties of HAT-P-1, i.e. Teff = 6000 K,
log g = 4.5 and [Fe/H] = 0.0. Previous analyses on high
signal-to-noise transit light curves with limb darkening co-
efficients derived from 1D model predictions sometimes re-
sulted in poor fits, especially in the ingress and egress phases
of the transit, which is characteristic of incorrect limb dark-
ening (Hayek et al. 2012). The main reason for this issue
lies in a generic shortcomings in the structure of 1D model
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Figure 3. HST/STIS normalised white light curves based on data collected during the three visits (left to right): on UT 2012 May
26 (G430L), May 30 (G750L) and September 19 (G430L). Top panels: Raw light curves normalised to the mean raw flux (originally in
electrons). The light curves experience prominent systematics associated with the HST thermal cycle (see text for details); Middle panels:

Detrended light curves along with the best-fit transit model (Mandel & Agol 2002) superimposed with continuous lines; Lower panels:

Observed minus modelled light curve residuals, compared to a null (dashed lines) and a 3σ level (dotted lines) used to identify outliers.
The spectrophotometric data from G430L and G750L are colour coded in blue and red, respectively. A colour version is available in the
online version of the journal.

Table 2. Spectroscopically derived stellar atmospheric parame-
ters for HD 209458 and HAT-P-1.

Property HD 209458 HAT-P-1
Hayek et al. (2012) Torres et al. (2008)

Teff , K 6095 ± 53 5975 ± 120
log g, cms−2 4.30± 0.09 4.45± 0.15
[Fe/H], dex 0.00± 0.04 0.13± 0.08

Initially, the values for the four limb darkening coef-
ficients were derived from the 1D ATLAS theoretical stel-
lar models of Kurucz8, following the procedures described
in Sing (2010). In particular, we obtained theoretical limb
darkening coefficients for the closest match to a star with
the physical properties of HAT-P-1, i.e. Teff = 6000 K,
log g = 4.5 and [Fe/H] = 0.0. Previous analyses on high
signal-to-noise transit light curves with limb darkening co-
efficients derived from 1D model predictions sometimes re-
sulted in poor fits, especially in the ingress and egress phases
of the transit, which is characteristic of incorrect limb dark-
ening (Hayek et al. 2012). The main reason for this issue
lies in a generic shortcomings in the structure of 1D model
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atmospheres compared to more sophisticated 3D stellar at-
mospheric models. In particular, when compared in the case
of the solar atmosphere, 3D models explicitly take into ac-
count the effect of convective motions in the surface gran-
ulation and reproduce the solar atmosphere with a higher
degree of realism. Hayek et al. (2012) employed 3D stellar at-
mospheric models and computed limb darkening coefficients
for HD 209458. Notably, the stellar atmospheric parameters
of HAT-P-1 are quite similar (at the 1σ level) to those of
HD 209458 as displayed in Table 2. In particular, both stars
are of similar effective temperature, however HD 209458 is
120K hotter than HAT-P-1. That difference however, is well
within the effective temperature uncertainties of both stars,
which allows one to adopt the available HD 209458 limb
darkening coefficients in the analysis of HAT-P-1. We com-
pare both the 1D and 3D models in the forthcoming analysis
sections.

Previous STIS data analyses showed that the first in-
tegration exhibits abnormally low flux (Charbonneau et al.
2002; Sing et al. 2008b; Pont et al. 2008; Sing et al. 2011a;
Huitson et al. 2012). We attempted to resolve this issue by
incorporating an additional 1 s long exposure prior to the
284 s integrations. However, it has been found that skipping
the 1 s and the first 284 s integration of each orbit improved
the fit by reducing the χ2 value. We therefore exclude these
two data points from each orbit in the analysis.
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Fig. 18.— GMOS B600 spectral light curves in
250 Å bins after removal of systematics and nor-
malization, overplotted with the best-fitting tran-
sit models from Mandel & Agol (2002). The spec-
tral lightcurves are plotted with longer-wavelength
bins at the bottom, and each lightcurve has an
arbitrary flux o↵set for clarity. The wavelength
ranges covered by each lightcurve are written on
the plots, along with the corresponding standard
deviation of the unbinned residuals. include the
residuals in this plot.

Fig. 19.— Transmission spectrum of WASP-4b
from the R150 observations. Black circles show
the weighted mean transmission spectrum ob-
tained from both observations. Blue squares show
the transmission spectrum obtained from obser-
vation 1 and green stars show the transmission
spectrum obtained from observation 2.

20

Fig. 17.— GMOS R150 spectral light curves in 250 Å bins after removal of systematics and normalization,
overplotted with the best-fitting transit models from Mandel & Agol (2002). Observation 1 is on the left and
observation 2 is on the right. In each case, the spectral lightcurves are plotted with longer-wavelength bins
at the bottom, and each lightcurve has an arbitrary flux o↵set for clarity. The wavelength ranges covered by
each lightcurve are written on the plots, along with the corresponding standard deviation of the unbinned
residuals. include the residuals in this plot. Photometric uncertainties have been rescaled with �.
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Fig. 17.— GMOS R150 spectral light curves in 250 Å bins after removal of systematics and normalization,
overplotted with the best-fitting transit models from Mandel & Agol (2002). Observation 1 is on the left and
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Why a Survey with GMOS-NS?
!

• What? Comparative exoplanetology!

• Probing atomic (Na, K), molecular (H2O, TiO,VO) species!

• Cloud-free or cloudy?!

• How?  

• MOS Transmission Spectroscopy (photometric precision).!

• 9 Objects (8 <Vmag<11)!

• Observe and re-observe transits of individual objects.!

• Why? 

• Understanding instrumental and observational systematics!

• Interpretation of the spectra can be challenging
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New	
  survey	
  awarded	
  (B600)	
  
PI	
  Huitson	
  
2015B	
  -­‐>	
  2017A	
  (24hrs/sem)	
  



Numerous	
  Challenges	
  to	
  Overcome	
  

•  Requirement:	
  	
  	
  100	
  ppm/10	
  nm	
  

•  Variability:	
  instrumental,	
  observaPonal,	
  astrophysical	
  
(the	
  key	
  is	
  to	
  control	
  and	
  understand	
  these	
  variaPons).	
  

•  Detectors:	
  cosmePcs,	
  fringing	
  (10%),	
  new	
  detectors	
  
significantly	
  improve	
  results!	
  (cf.	
  poster	
  by	
  K.	
  Roth	
  et	
  al.)	
  

•  Scheduling	
  and	
  observing	
  transits:	
  few	
  events	
  per	
  year	
  
(for	
  hot-­‐Jupiters!),	
  and	
  observing	
  during	
  4-­‐7	
  hours!!!	
  



Analysis	
  pipeline	
  online	
  this	
  fall	
  (v1.0)	
  

-­‐  Standard	
  2D	
  image	
  processing	
  but	
  to	
  high	
  precision	
  
-­‐  De-­‐PlPng	
  
-­‐  Correct	
  electronic	
  errors	
  in	
  columns	
  
-­‐  Spectral	
  extracPon	
  
-­‐  Wavelength	
  calibraPon	
  
-­‐  Cross-­‐correlaPon	
  in	
  Pme	
  
-­‐  Characterize	
  fringing	
  
-­‐  OpPmize	
  transmission	
  spectral	
  binning	
  
-­‐  Fit	
  transit	
  lightcurves	
  
-­‐  Interpret	
  transmission	
  spectra	
  with	
  models	
  



Super-­‐Earth	
  (GJ1214b)	
  
Bean	
  et	
  al.	
  (2010)	
  



MOS	
  for	
  Exoplanet	
  Atmospheres	
  
Current	
  picture	
  (GMOS	
  in	
  context):	
  

•  VLT/FORS	
  (Bean+10,	
  Boffin+15),	
  back	
  this	
  semester	
  
•  GMOS	
  (Gibson+13ab,	
  Stevenson+14)	
  
•  	
  Magellan/IMACS	
  (Jordan+13)	
  
•  Keck/DEIMOS	
  



MOS	
  for	
  Exoplanet	
  Atmospheres	
  
Current	
  picture	
  (GMOS	
  in	
  context):	
  

Strength	
  of	
  GMOS:	
  
Q-­‐scheduling,	
  eavesdropping,	
  new	
  detectors,	
  full	
  sky	
  	
  

•  VLT/FORS	
  (Bean+11,	
  Boffin+15),	
  back	
  this	
  semester	
  
•  GMOS	
  (Gibson+13ab,	
  Stevenson+14)	
  
•  	
  Magellan/IMACS	
  (Jordan+13)	
  
•  Keck/DEIMOS	
  



MOS	
  for	
  Exoplanet	
  Atmospheres	
  

•  Stabilized	
  MOS	
  
•  MulP-­‐wavelength	
  (blue	
  and	
  red	
  arms)	
  
•  Fast	
  readout	
  (bright	
  stars	
  from	
  NASA/TESS)	
  
•  Fast	
  turn	
  over	
  proposals	
  for	
  any	
  events	
  
•  Scheduling	
  best	
  events	
  
•  ELTs,	
  GMT,	
  TMT,	
  but	
  also	
  8-­‐10m	
  class	
  telescopes	
  

Current	
  picture	
  (GMOS	
  in	
  context):	
  

Strength	
  of	
  GMOS:	
  
Q-­‐scheduling,	
  eavesdropping,	
  new	
  detectors,	
  full	
  sky	
  	
  
Future	
  ?	
  

•  VLT/FORS	
  (Bean+11,	
  Boffin+15),	
  back	
  this	
  semester	
  
•  GMOS	
  (Gibson+13ab,	
  Stevenson+14)	
  
•  	
  Magellan/IMACS	
  (Jordan+13)	
  
•  Keck/DEIMOS	
  



Near-­‐Future	
  of	
  GMOS	
  for	
  exoplanets	
  	
  
GEONIS	
  

(Gemini	
  Efficient	
  OpPcal	
  and	
  Near-­‐infrared	
  Imager	
  and	
  Spectrograph)	
  
PI/PM	
  N.	
  Konidaris	
  (see	
  GIFS	
  presentaPon	
  this	
  pm)	
  

	
  

•  OpPcal	
  +	
  NIR	
  spectrograph	
  
•  Wide	
  FoV	
  (12’	
  diameter)	
  
•  High	
  throughput	
  
•  Stabilized	
  (Flexure	
  compensaPon	
  system)	
  
•  High	
  duty	
  cycle	
  EMCCDs	
  (4k	
  x	
  4k)	
  
•  R	
  ~	
  4000	
  

A	
  workhorse	
  instrument	
  for	
  exo-­‐atmospheres:	
  



MOS	
  for	
  Exoplanet	
  Atmospheres	
  

•  Stabilized	
  MOS	
  
•  MulP-­‐wavelength	
  (blue	
  and	
  red	
  arms)	
  
•  Fast	
  readout	
  (bright	
  stars	
  from	
  NASA/TESS)	
  
•  Fast	
  turn	
  over	
  proposals	
  for	
  any	
  events	
  
•  Scheduling	
  best	
  events	
  
•  ELTs,	
  GMT,	
  TMT,	
  but	
  also	
  8-­‐10m	
  class	
  telescopes	
  

Strength	
  of	
  GMOS:	
  
Q-­‐scheduling,	
  eavesdropping,	
  new	
  detectors,	
  full	
  sky	
  	
  

Future	
  ?	
  


