Probing Transiting Exoplanet Atmospheres with Gemini/GMOS

Credit: Gemini/AURA

Jean-Michel Désert University of Colorado, Boulder

Plan of talk

I) Probing exoplanet atmospheres with groundbased telescopes

II) GMOS' best assets... and results!

III) Future of transiting exoplanet atmospheres with Gemini

Transits allow Studies of Atmospheres that are not possible for Non-Transiting Exoplanets

Transits allow Studies of Atmospheres that are not possible for Non-Transiting Exoplanets

Mass-Radius Relationship for Transiting Planets

Updated from Winn et al. (2011)

Provides basic information on the atmospheres

Mass-Radius Relationship for Transiting Planets

Updated from Winn et al. (2011)

<u>Next step</u>: exo-atmospheric composition (atomic, molecular and condensates), metallicity (C/O) and structure (T-P) => Spectroscopy

Exoplanet characterisation Fundamental Questions We Would Like to Answer

- Nature and physical properties of planetary systems detected? (test planetary physics in new regimes)
- Planetary formation: where and how planets form?
- Study of a new class of astronomical objects: what are the family of properties?
- How they compare to the Solar-System?
- Developing the tools to study Earth analogs

Spectroscopy from space telescopes

HST vs Gemini/GMOS

MOS Technique

- Target + reference stars: same magnitude & spectral type
- This technique allows us to correct for systematics wavelength by wavelength

 Wide 12" slit to improve spectrophotometric precision (avoid slit losses)

MOS Technique

- Target + reference stars: same magnitude & spectral type
- This technique allows us to correct for systematics wavelength by wavelength
- Wide 12" slit to improve spectrophotometric precision (avoid slit losses)
- We get a frame every ~ 50 s and build transit lightcurves

How to Extract Exoplanet Spectra

How to Extract Exoplanet Spectra

Comparison with models

Models from J. Fortney

Comparison with models

Cloud-Dominated hot-Jupiters

Previous results on hot-Jupiters

First Ground-Based Survey of exo-atmospheres (GMOS)

- <u>What?</u> Comparative exoplanetology
 - Probing atomic (Na, K), molecular (H₂O, TiO, VO) species
 - Cloud-free or cloudy?
- <u>How?</u>
 - MOS Transmission Spectroscopy (photometric precision).
 - 9 Objects (8 < Vmag< | |)
 - Observe and re-observe transits of individual objects.
- <u>Why?</u>
 - Understanding instrumental and observational systematics
 - Interpretation of the spectra can be challenging

Why Gemini/GMOS?

- Ground-based, 8m telescopes
- Multi-Object optical spectroscopy
- Large 5 x 5 arcmin FOV
- Fully-sky coverage with both GMOS instruments
- Queue mode, eavesdropping

XO-2b: Detection of Na

XO-2b: Cloud-Free

First Results from GMOS Survey

First Results from GMOS Survey

Numerous Challenges to Overcome

- <u>Requirement</u>: 100 ppm/10 nm
- <u>Variability</u>: instrumental, observational, astrophysical (the key is to control and understand these variations).
- <u>Detectors</u>: cosmetics, fringing (10%), new detectors significantly improve results! (cf. poster by K. Roth et al.)
- <u>Scheduling and observing transits</u>: few events per year (for hot-Jupiters!), and observing during 4-7 hours!!!

Analysis pipeline online this fall (v1.0)

Super-Earth (GJ1214b)

Bean et al. (2010)

Current picture (GMOS in context):

- VLT/FORS (Bean+10, Boffin+15), back this semester
- GMOS (Gibson+13ab, Stevenson+14)
- Magellan/IMACS (Jordan+13)
- Keck/DEIMOS

Current picture (GMOS in context):

- VLT/FORS (Bean+11, Boffin+15), back this semester
- GMOS (Gibson+13ab, Stevenson+14)
- Magellan/IMACS (Jordan+13)
- Keck/DEIMOS

Strength of GMOS:

Q-scheduling, eavesdropping, new detectors, full sky

Current picture (GMOS in context):

- VLT/FORS (Bean+11, Boffin+15), back this semester
- GMOS (Gibson+13ab, Stevenson+14)
- Magellan/IMACS (Jordan+13)
- Keck/DEIMOS

Strength of GMOS:

Q-scheduling, eavesdropping, new detectors, full sky

- *Future ?* Stabilized MOS
 - Multi-wavelength (blue and red arms)
 - Fast readout (bright stars from NASA/TESS)
 - Fast turn over proposals for any events
 - Scheduling best events
 - ELTs, GMT, TMT, but also 8-10m class telescopes

Near-Future of GMOS for exoplanets<u>GEONIS</u>

(Gemini Efficient Optical and Near-infrared Imager and Spectrograph) **PI/PM N. Konidaris (**see GIFS presentation this pm)

A workhorse instrument for exo-atmospheres:

- Optical + NIR spectrograph
- Wide FoV (12' diameter)
- High throughput
- Stabilized (Flexure compensation system)
- High duty cycle EMCCDs (4k x 4k)
- R ~ 4000

Strength of GMOS:

Q-scheduling, eavesdropping, new detectors, full sky

Future ?

- Stabilized MOS
- Multi-wavelength (blue and red arms)
- Fast readout (bright stars from NASA/TESS)
- Fast turn over proposals for any events
- Scheduling best events
- ELTs, GMT, TMT, but also 8-10m class telescopes