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1 INTRODUCTION

This document describes World Coordinate System (WCS) facilities on Gemini. “World Coordi-
nates” are celestial coordinates as opposed to instrumental coordinates. The facilities described
here help to address such problems as:

e What is the J2000 [, §] of this pixel?
e Where on my detector is the image of this B1950 [a, §] star?
e Which direction on my picture is north?

e What headers should T use in my FITS files?

In addition, there is a general-purpose celestial coordinate transformation facility that can answer
such questions as:

e What are the J2000 coordinates of this equinox B1950 epoch 1978.2 star?

e To what [ Az, El | should my telescope mount be set in order to image that J2000 [, 6]
on this pixel of my detector?

New readers may find it easiest to start by looking through the Programming Fxamples sec-
tion at the end, which hints at the problems being addressed and the available techniques for
dealing with them. Previewing the section on The Telescope Context is also worthwhile, as
this explains where the basic information comes from that ties down the WCS. By that stage,
the General Principles section can be tackled, and finally the introduction to the Astrometry
Software section. The remaining material is intended mainly for reference.

2 GENERAL PRINCIPLES

2.1 The Basics

The Gemini WCS facilities are based on the assumption that, for astrometric purposes, users of
the telescope are concerned with only two classes of coordinates:

e Positions in the focal plane.

e Directions in the sky.

The WCS facilities provide for transformations between these coordinates. All intermediate
calculations, for example involving the position of M2, the orientation of the instrument rotator
or the amount of atmospheric dispersion, are encapsulated in the transformations which the

TCS/WCS facilities provide.

The Gemini focal-plane coordinate systems are shown in Figure 1. The [z, y] coordinate system
is fixed to the instrument mount and rotates with the instrument, about the origin. The sky
coordinates supported are three sorts of [, ] (FK4, FK5 and geocentric apparent place) plus
topocentric [ Az, Fl].
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Figure 1: Gemini Focal-Plane Coordinate Systems.

This is a view looking up at the sky; the view looking at the back of the instrument
rotator from outside the telescope is the same apart from the field being upside-down.

e 0 is the user-specified rotator position-angle. It can be in terms of any of the sup-
ported sky coordinate systems, for example with respect to J2000 [, §]. This
user-specified position-angle is essentially the same as the mechanical position-
angle if the nominated coordinate system is [ Az, El ].

e z and y are the focal-plane coordinates used by the WCS facilities. They rotate
with the instrument mount.

e ¢ and 7 are the so-called “standard coordinates”; they are related to right as-
cension and declination (or azimuth and elevation) through standard formulae.

The WCS facilities described in this paper provide for transformations between [z, y ]
and [, n]. There is also support for using local instrumental coordinates (e.g. pixels)
instead of [z, y].
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2.2 Sky Coordinates

The relationships between different celestial coordinate systems, though well-documented, are
recondite and subtle. For example the relationship between B1950 [a,d] and J2000 [«,d] is
much more than the 50 years of precession that makes up the bulk of the transformation. The
coordinate rotation itself comes from several different sources, involving two distinct precession
models and an intermediate epoch. Furthermore, the two systems are in relative motion, so that
distant objects such as QSOs have proper motions when expressed in B1950 coordinates. Yet
another complication is that the B1950 system involves an overall distortion on top of the pure
rotation, due to the E-terms of aberration.

A more obvious departure from any simple-minded scheme — for example one based only on
(i) where the optical axis of the telescope is pointing, (ii) the image scale and (iii) rotator angle
— is the effect of refraction. Quite apart from dispersion effects (an imaginary white J2000
réseau on the celestial sphere would appear in the focal plane fringed with false colour), the
whole picture is compressed in the vertical direction.

The effect of all of these complications — subtle in the case of B1950 versus J2000, gross in the
case of refraction — are properly handled by the TCS, and the WCS transformations that the
TCS supports include their effects. All the user has to do is to nominate which celestial coordi-
nate system to use (and to specify the working wavelength), whereupon efficient transformations
between those coordinates and [, y], in either direction, are available through easy-to-use func-
tion calls. However, a fundamental difficulty with any scheme that tries to achieve this is the
inescapable trade-off between simplicity and efficiency on the one hand and accuracy on the
other. At one extreme lies the “simple-minded” scheme mentioned earlier, where the basic
formulae of spherical astronomy are applied directly. The other extreme is to carry out an
exhaustive and rigorous transformation for every desired point.

2.3 The WCS Model

The approach taken for the Gemini WCS service maximizes ease of use and efficiency without
significantly compromising accuracy. The scheme is based on the “affine transformation” used
in conventional plate reduction. This models the pointing in the focal plane by expressing the
relationship between a gnomonic (i.e. tangent plane) projection of the celestial coordinates in
the field of view to the [z, y] coordinates in the focal plane (which can either be in the rotating
frame of the instrument mount or can be in coordinates local to the instrument). The model
consists of eight numbers: the two spherical coordinates of the centre of the projection (g, ¢o)
and the six coefficients of the affine transformation (a, b, c,d, €, f).

2.4 Where the WCS Model Comes From

The WCS software obtains the model by sampling the focal plane in five places (the centre
and the corners of a square extending about halfway to the edge of the field) and carrying out
a rigorous pointing calculation for each. A least-squares fit is then performed to obtain the
affine transformation which expresses the predicted standard coordinates [£,7] as a function
of the sample [z, y] coordinates. The six coefficients a ... f encapsulate the overall scale and
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orientation, plus any squash and skew.? Higher-order distortions, in particular the fact that
refraction makes the bottom of the field more squashed than the top, are not modelled; however,
the resulting errors are always acceptable for Gemini, a few milliarcseconds at most.

2.5 Mathematical Details
Normally, application code will use functions from the Gemini astlib library to transform posi-
tions using a WCS transformation structure. However, on some occasions it may be appropriate

to operate with a WCS transformation directly, either using inline code or calls to SLALIB
functions. The techniques are as follows.

2.5.1 Focal plane to sky
To transform rotator [z, y] coordinates into celestial coordinates |8, ¢ ], where 6 stands for right

ascension or azimuth and ¢ stands for declination or elevation, first apply the affine transforma-
tion to the [z, y] and generate standard coordinates [, n]:

E=a+bx+ cy
n=d+ex+ fy

The [£, 1] can then be de-projected into spherical coordinates [6, ¢]:
d = cos o — qsin o

6= tan' S b,
an d—l—

_1 8in ¢ + 1 cos ¢,
n

NEE

The two stages correspond to the SLALIB routines slaXy2xy and slaDtp2s.

¢ =ta

2.5.2 Sky to focal plane

To transform celestial coordinates [#, ¢] into rotator coordinates [z, y], first invert the affine
transformation:

A=bf — ce

A= (cd-af)/A

?Because the origin of [#,y] is the tangent point, two of the coefficients, a and d in the expressions given
later, are close to zero (not exactly so because of the changing refraction across the field). Coefficients ¢ and e
are usually almost the same as each other, and so are b and £ apart from a sign change. The six coefficients can
be decomposed into scales, orientation and non-perpendicularity by means of the SLALIB routine slaDcmpf.
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B=f/A
C=—c/A
D = (ae — bd)/A
FE=—¢/A
F=0b/A
Then transform the spherical coordinates into standard coordinates:
A =6-46,

d = sin ¢ sin ¢, + cos ¢ cos ¢, cos Af

¢ = cos ¢sin Ad

N d

sin ¢ cos ¢, — cos ¢ sin P, cos Af
d

Finally transform the standard coordinates into rotator [z, y]:

r=A+ B¢+ Cn
y=D+ E{+ Fn

The three stages correspond to the SLALIB routines slaInvf, slaDs2tp and slaXy2xy.

2.6 Nominal Focal-Plane Coordinates at the Instrument Ports

The [z, y] coordinate system for each of the four instrument ports is such that with the telescope
vertical and viewed from the outside the y-axis points up and the z-axis points to the left. In
a mechanical sense, this matches that of the Cassegrain port in handedness, but in terms of
the region of sky being viewed there is a rotation of the field, different for each port. plus a
mirror-reversal. For WCS focal-plane coordinates z and y and instrument-port coordinates X,
and Y,,, where n is the port number:
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Y
Yl = +y X‘—T
/Yl
Y2
Y2 = —Z )l{_>
/YQ
Y3
Y; = +y T_,X
/YS
Ya
/Y4 = _y X
/Y4
Ys
X5 = —|—$ X
Ys = —y ‘:l;
/YS

In addition to the gross transformations pictured above, there may be small rotational or zero-
point errors arising from optical misalignments.

The WCS facilities described in this paper work always in terms of the Cassegrain port (Port
#1), and are therefore independent of which port is in use; the transformation between the
coordinate system of the port in question and the standard [z, y] system are the responsibility
of the applications which use the TCS. However, because the coordinate systems at these ports
are not realized (no encoders or local rotator axes) they bypass the TCS’s calculations and cancel
out of any calibration procedures.

2.7 Calibration

Careful mechanical measurements of the instrument with respect to the mounting arrangements
will enable a preliminary assessment of the WCS to be made: what values of [z, y] to use for
the pointing origins, which way up the picture will be, and so on. With the instrument mounted
on the telescope, these measurements must, in preparation for the observing run, be refined by
observations using stars.

By adjusting the telescope until a star lies on a standard pointing-origin (the centre of the
acquisition camera for instance), and then adjusting the instrument pointing origin until the
image lies in the desired position on the detector, an [z, y] can be logged which not only will be
of the required accuracy but will also cancel out various calibration errors along the way. Second
and third such determinations, for a different place on the detector, will allow (with the aid of
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a routine to be described later) the orientation and handedness of the instrument coordinate
system to be determined. Again, any calibration errors will automatically cancel out.

The most important result of these pre-observing calibrations is the ability to place stars on
the instrument accurately and to do so for all attitudes of the telescope and rotator. A further
important consequence is that the WCS transformations supplied by the TCS will be correct,
limited only by the telescope’s absolute pointing accuracy. For the highest precision, the pointing
can be locally zeroed on a nearby star of known position prior to the WCS transformation being
captured.

3 THE TELESCOPE CONTEXT

3.1 The Context Information

In order to predict the mapping between sky coordinates and the rotator [z,y] coordinate
system in the focal plane, the WCS software requires the following context information:

e The telescope orientation: specifically, the post-collimation, pre-flexure [ Az, Fl ].

e The telescope parameters: focal length, rotator position-angle, and the coefficients for the
geometrical part of the pointing model.

e The parameters involved in transforming from apparent place to observed place: site
location, refraction information, sidereal time etc.

M2 scan tip/tilt for the three chop states.

e A timestamp, to mark the time at which the [ Az, Fl ] was or will be correct.

In the case where the WCS facilities are being used in real time to predict what the telescope is
actually seeing, all of this information can be directly interrogated from the TCS. In cases where
the WCS facilities are being used in an offline application, or online but for another time or
field, the context must somehow be simulated. A function is provided to accomplish this, called
timeSimctx; it requires a number of additional items, concerning the time, the observatory
location and the target. The section on “Programming Examples”, later, demonstrates what
needs to be done.

There are two subtle but important points to make here.

1. Whereas to predict the telescope pointing, accurate values for all of the above information
must be supplied, the focal-plane projection is insensitive to many of the items, provided
that the set presented is internally consistent. This is of little relevance to the online/real-
time case, where correct values are automatically available. But for the non-real-time case
it will make very little difference what values of the pointing coefficients and meteorological
parameters (for example) are supplied when generating the simulated context. Even the
precise time may not matter, in sidereal tracking cases, where the projection of [, d] into
the focal plane is, to first order, constant; in such cases there is no point in worrying what
value of UT1—-UTC to use, for example. When using simulated contexts, the watchwords
are consistency and common sense.
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2. The WCS facilities use as the low-level telescope position the “post-collimation” or (same
thing) “pre-flexure” [ Az, Kl ]. The present intention is to implement all the additional
pointing terms that will turn out to be needed as a group, applied between the post-
collimation level and the MCS demand [ Az, Fl ] level, rather than by intermingling the
new terms with the basic 5-term “geometrical” model (AN, AW, NPAE, CA, CE). The
MCS demands will then be the “post-collimation” [ Az, Fl | plus tube flexure and other
semi-empirical terms, plus index errors. It is extremely unlikely that these extra terms will
significantly affect the orientation of the image, and hence they can safely be neglected for
WCS purposes. This has the major benefit that the WCS software will not need to change
as the pointing models are developed. The one disadvantage is that applications which
wish to predict the positions of star images in the focal plane starting from raw encoder
readings must themselves calculate and apply the correction for tube flexure and the other
additional terms.

3.2 Real-Time Aspects

TCS makes the necessary context information available as an EPICS process variable that is
updated at 20Hz. The EPICS database in the instrument IOC must arrange to copy this
information at appropriate times and update the copy in astlib global memory. This should
be done with a gensub record with the following properties set on one of its input links (INPA
in this example):

NOA 39
FTA DOUBLE
def (INPA) | TCS:ak:astCtx.VALA

and with an associated subroutine similar to:

long updateAstCtx(struct genSubRecord *pgsub)

{
(void) astSetctx( pgsub->a );

return O;

(The correct value to use for the NOA property is defined in the header file astLib.h as macro
AST_CTXA_SIZEJ

Having copied the telescope context from the TCS to the local IOC in this way, it is necessary to
extract the required numbers and turn them into a WCS transformation. The functions which
do this are described in the next section.

It should be borne in mind that a new context can only be brought to the IOC through EPICS,
and that the functions which the application calls merely access this local copy. This raises the
question of how frequently the EPICS transfer should be triggered — maintaining a copy of the
context at the full 20 Hz may not be feasible.
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As a rule, a Gemini telescope will track the same [a, §] for long periods, with the field stabilized
using the instrument rotator. Under these circumstances, the WCS transformation (i.e. between
focal-plane [z, y] and some sort of [, §]) will stay approximately constant. Therefore no great
demands will be placed on the instrument control system for precise timing, and there will be
no need for frequent EPICS activity. Although the transformation will change slowly due to
differential refraction, an update to the WCS transformation every few minutes will be good
enough for many purposes.

However, where the telescope or the instrument rotator is moving with respect to the nominated
coordinate system — trailing, scanning, offsetting etc. — the instrumentation system will need
to take time into account and will need more frequent EPICS activity. This ever-changing
information is rendered manageable by the WCS functions returning a timestamp along with
the transformation. The timestamp is the Gemini raw time which corresponds to the other
telescope context information which the TCS makes available at 20 Hz and which applies equally
precisely to the WCS transformation itself.

4 THE ASTROMETRY SOFTWARE

Developers of Gemini instrumentation applications are provided with two libraries of astrometry-
related C functions. One is a set of Gemini-specific routines called astlib; the other is the
general-purpose positional-astronomy library slalib.

4.1 Functions Specific to Gemini
4.1.1 BACKGROUND

All Gemini subsystems are expected to obtain WCS information through the small library of
functions which is described below. Further transformations may then be carried out using
slalib.

The routines fall into three categories:

1. “Get WCS transformation” — needed as frequently as the transformation changes, perhaps
every five minutes for normal applications involving sidereal tracking. WCS transforma-
tions are obtained from the TCS in the form of the “context”, a set of parameters about the
telescope — where it is pointed, the current values of time-dependent positional-astronomy
quantities and so on. Using a context obtained from the TCS via EPICS, the subsys-
tem can, without causing network activity or incurring any other interprocessor delays,
generate one or more WCS transformations and do multiple WCS transformations. The
functions under this heading can be further subdivided into (a) routines only runnable in
an IOC and (b) routines that can also run on a Unix host.

2. “Express focal-plane coordinates as celestial coordinates or wvice versa” — used whenever
the system wants to relate the instrument to the sky.

3. “Transform sky coordinates from one reference frame to another” — useful, for example,
when an 10C has the B1950 position of a source and wishes to log it also in J2000 coor-
dinates.
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Some functions from category 1, and all functions in categories 2 and 3 can be run in a Unix
host as well as an IOC. They can also be used offline, in conjunction with stored or artificial
WCS transformation structures. Furthermore, the functions in category 3 are quite general and
can be used to carry out transformations unconnected with the Gemini telescopes.

Offline use requires certain context information to be supplied which is normally obtained (a
good deal more conveniently) directly from the TCS. The context involves time as well as the
telescope.

4.1.2 CLASSIFIED LI1ST OF ROUTINES

A classified list of the Astrometry Library functions is given below. Detailed specifications for
each function (in alphabetical order) are given in the next section.

1. Get WCS transformation
[OC-runnable only:

e astGetctx — obtain the full context information.
e astGetpo — obtain the current pointing origins.
e astSetctx — set the context information.

e astGettr — obtain a WCS transformation.
Runnable also on a Unix host or offline:

e astCtx2tr — use context to generate a WCS transformation ([ z,y] to sky).

e astFitij — fit instrumental coordinates to focal plane coordinates.

e astFITS — express a WCS transformation as FITS headers.

e astInvtr — invert a WCS transformation.

e astRot — predict the rotator orientation.

e astSimctx — generate a simulated context.

e astXtndr — extend a WCS transformation to work from pixel instead of rotator
coordinates.

2. Transform between focal-plane and sky coordinates

e astS2xy - sky to rotator [z, y].
e astS2xyq — sky to [z, y] using an existing WCS transformation.
e astXy2s — rotator [z, y] to sky.
e astXy2sq — [z,y] to sky using an existing WCS transformation.

3. Transform between two sorts of sky coordinates

e astCoco — transform position between celestial frames.

e astCocoR — transform position and rate between celestial frames.
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Important Note:

The WCS functions support two forms of transformation: [z,y]-to-sky and sky-
to-[z,y]. These occupy identical data structures; in fact two of the numbers (the
spherical coordinates of the rotator axis) are unaffacted as one form is transformed
into the other. The inversion operation is most conveniently carried out by the
astInvtr function, and this works in either direction: two successive calls with the
output of the first call fed to the input of the second will reproduce the original
transformation.

This symmetry introduces the danger of using the wrong transformation — for ex-
ample attempting to convert an [z, y] into an [a,d] with a WCS structure that is
for the sky-to-[ z, y] direction. Under these circumstances erroneous numbers will be
generated, and no error will be reported. This danger is the price paid for flexibility.
Applications may wish to generate their own transformations, perhaps using entirely
different units and with the coordinate system reckoned from an entirely different
origin. The supplied functions are designed to support this type of use.

In short, it is up to the instrumentation application to keep track of what its various
WCS structures are for.

4.1.3 ROUTINE SPECIFICATIONS (ALPHABETICAL)

Details of all the ast1lib routines follow.

Notes:

e Applications which use the library must contain an #include astLib.h statement. There
is an astsys.h include file as well, but this is for internal use only. For clarity, the
definitions for the various enumerations and structures, extracted from the #include files,
are reproduced in a later section.

e The coordinate-system argument, frame, is an enumerated type, defined in astLib.h.
The indicated codes are used exactly as indicated (no quote marks). For example, to
transformation a focal-plane [z,y] into J2000 [, d] (for a 1 wavelength and chop state
A) you could write:

j = astXy2s ( x, y, FK5, 2000.0, 1.0, O, &ra, &dec )

Similar remarks apply to the symbol TT, which stands for the timescale Terrestrial Time.

astCoco Transform Position astCoco

ACTION :

Transform a source position from one coordinate system to another.

CALL :

status = astCoco (al, bl, pmotion,
cosysl, equinoxl, epochil,
cosys2, equinox2, date, aoprms, tel,
&a2, &b2 )
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GIVEN :
Source
al double
b1 double
pmotion  struct PMPXRV

Starting coordinate system

cosysl FRAMETYPE
equinor! struct EPOCH
epochl struct EPOCH

Final coordinate system

cosys2 FRAMETYPE
equinozr? struct EPOCH
Circumstances

date double

aoprms double[15]

tel struct TELP
RETURNED :

a2 double*

b2 double*

RETURNED (function value) :

int

14

right ascension or azimuth (radians)
declination or elevation (radians)
proper motion etc. (see notes 2 and 13)

original coordinate system
catalogue equinox (see note 13)
catalogue epoch (see note 13)

final coordinate system
equinox of final frame (see note 13)

epoch of observation (TT MJD; see note 1)
apparent-to-observed parameters (see notes 5 and
13)

telescope-dependent parameters (see note 13)

final right ascension or azimuth (radians)
final declination or elevation (radians)

status: +1 = unreachable position
OK

—1 = invalid original frame
—2 = invalid final frame

NOTES :
1. When using this routine, a potential source of confusion is that there are two sorts
of “now”:
date epoch of observation
aoprms[13]  sidereal time

In principle, the date and the sidereal time ought to be consistent. However, in prac-
tice this is unimportant: the date is used for calculating proper motion, precession
etc., while the sidereal time is used for converting between an [a, ¢] and an [ Az, El].
Note, however, that the sidereal time must be accurate: any vagueness will appear
as corresponding uncertainties in the rapidly-changing [a, é] to/from [ Az, El] trans-

formation.
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2. The pmotion.pm flag distinguishes between the cases where a proper motion in the
(rotating) FK4 frame is being supplied and the case where there is assumed to be
no proper motion in a (non-rotating) inertial frame. False (0) means zero proper
motion in an inertial frame and is the correct value to use for extragalactic sources.
True (# 0) is the correct choice where there is a known proper motion, e.g. from a
catalogue. Note that in FK4 coordinates a distant object exhibits a fictitious proper
motion of up to about 05 per century. Conversely, a star that happened to have
a zero proper motion in the FK4 system would in fact have a proper motion of up
to about 0°5 per century with respect to an inertial frame. Setting pmotion.pm to
false has no effect for non-FK4 frames except that the parallax and radial velocity
are assumed zero.

3. The treatment of proper motion, parallax and radial velocity is, strictly speaking,
approximate in the case of FK4/FK5 frames of non-standard equinox (i.e. not
B1950/J2000). The treatment here assumes that the proper motions are constant in
spherical coordinates and the radial velocity and parallax are correct at B1950/J2000.

4. Input mean [a,d] frames are barycentric (i.e. the coordinates are unaffected by
annual parallax). Output mean [a,d] frames are geocentric (i.e. are subject to
variations due to annual parallax).

5. The aoprms array contains the star-independent apparent-to-observed parameters:

[o] geodetic latitude (radians)

[1,2] sine and cosine of geodetic latitude

[3] magnitude of diurnal aberration vector

[4] height (metres)

(5] ambient temperature (°K)

(6] pressure (mB)

(7] relative humidity (0-1)

(8] effective wavelength (microns)

[9] tropospheric lapse rate (°K/metre)

[10,11] refraction constants A and B (radians)

[12] longitude + eqn of equinoxes + sidereal AUT (radians)
[13] local apparent sidereal time (radians)

[14] polar-motion adjustment to azimuth (radians)

It can be constructed by calling the SLALIB routine slaAoppa to generate elements
0-13 and then slaPolmo to generate the final element. The sidereal time (element
13) can be selectively updated by calling sladoppat. Adjustment of the refraction
constants can be accomplished most efficiently by using slaAtmdsp to provide new
values for elements 8, 10 and 11.

Element 12 is not used by the present routine. It is included for compatibility with
sladoppat.

6. Where the given position is one of the [ Az, Fl Js, it is assumed to refer to the sidereal
time supplied in the aoprms array. This means that the function cannot convert an
[Az, El] from one epoch to another.

7. There is no provision for different telescope parameters applying to the original and
final coordinate systems. However, transformations involving different telescope pa-
rameters (for example specifying two different pointing- origins) can be carried out
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10.

11.

12.

by calling the function twice, first to transform into apparent place (say) and then to
transform back again with the new telescope parameters.

. The transformations between topocentric and mount coordinates assume tangent-

plane geometry in the focal plane.

. Azimuths are with respect to terrestrial rather than celestial north.

The “unreachable position” status occurs when predicting mount [ Az, Fl ] for a point
near the zenith that cannot be reached because of collimation error. A reachable
position nearby is returned under these circumstances.

For transformations into mount [ Az, Fl ], there may be cases near the zenith where
there are two solutions. In such cases, the function returns only the solution where
the star and the telescope are on the same side of the zenith.

Refraction corrections are disabled below the Gemini elevation limit to reduce com-
putation. See the astCocoR routine for further details.

13. Not all the arguments are referred to in all cases. The following rules apply:
argument referred to if and only if
equinox1 cosys1 is FK4 or FK5
epochi cosys1 is FK4 or FK5
pmotion cosys1 is FK4 or FK5
equinox?2 cosys2 is FK4 or FK5
epoch?2 cosys2 is FK4 or FK5
tel cosys1 and/or cosys2 is AZEL MNT
aoprms both cosys1 and cosys2 are APPT, AZEL_TOPO or AZEL MNT
astCocoR Transform Position and Drift-Rate astCocoR

ACTION :

Transform a source position and a drift-rate from one coordinate system to another.

CALL :

status = astCocoR (al, bl, pmotion, adotl, bdotl,

GIVEN :

Source

al
b1

cosysl, equinoxl, epochl,
cosys2, equinox2, date, aoprms, tel,
&a2, &b2, &adot2, &bdot2 )

double right ascension or azimuth (radians)
double declination or elevation (radians)

pmotion  struct PMPXRV proper motion etc. (see notes 2 and 13)

Drift-rate
adot1 double drift-rate in right ascension or azimuth (radians
per SI second)
bdot1 double drift-rate in declination or elevation (radians per

SI second)
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Starting coordinate system

cosysl FRAMETYPE original coordinate system
equinor!  struct EPOCH catalogue equinox (see note 13)
epochl struct EPOCH catalogue epoch (see note 13)

Final coordinate system

cosys?2 FRAMETYPE final coordinate system
equinozr? struct EPOCH equinox of final frame (see note 13)
Circumstances

date double epoch of observation (TT MJD; see note 1)

aoprms double[15] apparent-to-observed parameters (see notes 5 and
13

tel struct TELP telescope-dependent parameters (see note 13)

RETURNED :

a? double* final right ascension or azimuth (radians)

b2 double* final declination or elevation (radians)

adot?2 double* final drift-rate in right ascension or azimuth (ra-
dians per SI sec)

bdot?2 double* final drift-rate in declination or elevation (radians
per SI sec)

RETURNED (function value) :

int status: +1 = unreachable position
= OK
—1 = invalid original frame
—2 = invalid final frame

NOTES :

1.

When using this routine, a potential source of confusion is that there are two sorts
of “now”:

date epoch of observation
aoprms[13]  sidereal time

In principle, the date and the sidereal time ought to be consistent. However, in prac-
tice this is unimportant: the date is used for calculating proper motion, precession
etc., while the sidereal time is used for converting between an [a, ¢] and an [ Az, El].
Note, however, that the sidereal time must be accurate: any vagueness will appear
as corresponding uncertainties in the rapidly-changing [a, d] to/from [ Az, El] trans-
formation.

. The pmotion.pm flag distinguishes between the cases where a proper motion in the

(rotating) FK4 frame is being supplied and the case where there is assumed to be
no proper motion in a (non-rotating) inertial frame. False (0) means zero proper
motion in an inertial frame and is the correct value to use for extragalactic sources.
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True (# 0) is the correct choice where there is a known proper motion, e.g. from a
catalogue. Note that in FK4 coordinates a distant object exhibits a fictitious proper
motion of up to about 05 per century. Conversely, a star that happened to have
a zero proper motion in the FK4 system would in fact have a proper motion of up
to about 05 per century with respect to an inertial frame. Setting pmotion.pm to
false has no effect for non-FK4 frames except that the parallax and radial velocity
are assumed zero.

3. The treatment of proper motion, parallax and radial velocity is, strictly speaking,
approximate in the case of FK4/FK5 frames of non-standard equinox (i.e. not
B1950/J2000). The treatment here assumes that the proper motions are constant in
spherical coordinates and the radial velocity and parallax are correct at B1950/J2000.

4. Input mean [a, 8] frames are barycentric (i.e. the coordinates are unaffected by
annual parallax). Output mean [a,d] frames are geocentric (i.e. are subject to
variations due to annual parallax).

5. The aoprms array contains the star-independent apparent-to-observed parameters:

[o] geodetic latitude (radians)

[1,2] sine and cosine of geodetic latitude

[3] magnitude of diurnal aberration vector

[4] height (metres)

(5] ambient temperature (°K)

(6] pressure (mB)

[7] relative humidity (0-1)

(8l effective wavelength (microns)

(9] tropospheric lapse rate (°K/metre)

[10,11] refraction constants A and B (radians)

[12] longitude + eqn of equinoxes + sidereal AUT (radians)
[13] local apparent sidereal time (radians)

[14] polar-motion adjustment to azimuth (radians)

It can be constructed by calling the SLALIB routine slaAoppa to generate elements
0-13 and then slaPolmo to generate the final element. The sidereal time (element
13) can be selectively updated by calling slaAoppat. Adjustment of the refraction
constants can be accomplished most efficiently by using slaAtmdsp to provide new
values for elements 8, 10 and 11.

Element 12 is not used by the present routine. It is included for compatibility with
sladoppat.

6. Where the given position is one of the [ Az, Fl Js, it is assumed to refer to the sidereal
time supplied in the aoprms array. This means that the function cannot convert an
[Az, El] from one epoch to another.

7. There is no provision for different telescope parameters applying to the original and
final coordinate systems. However, transformations involving different telescope pa-
rameters (for example specifying two different pointing- origins) can be carried out
by calling the function twice, first to transform into apparent place (say) and then to
transform back again with the new telescope parameters.

8. The transformations between topocentric and mount coordinates assume tangent-
plane geometry in the focal plane.
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9. Azimuths are with respect to terrestrial rather than celestial north.

10. The “unreachable position” status occurs when predicting mount [ Az, F{ ] for a point
near the zenith that cannot be reached because of collimation error. A reachable
position nearby is returned under these circumstances.

11. For transformations into mount [ Az, Fl ], there may be cases near the zenith where
there are two solutions. In such cases, the function returns only the solution where
the star and the telescope are on the same side of the zenith.

12. The routine includes special precautions to avoid expensive and pointless refraction
calculations for cases below the Gemini 15° elevation limit. These precautions con-
sist of disabling the refraction corrections when transforming to or from AZEL MNT
positions at elevations less than about 14%5.

13. Not all the arguments are referred to in all cases. The following rules apply:

argument referred to if and only if

equinox1 cosys1 is FK4 or FK5

epochi cosys1 is FK4 or FK5

pmotion cosys1 is FK4 or FK5

equinox?2 cosys2 is FK4 or FK5

epoch?2 cosys2 is FK4 or FK5

tel cosys1 and/or cosys2 is AZEL MNT

aoprms both cosys1 and cosys2 are APPT, AZEL_TOPO or AZEL MNT

14. All combinations of target and tracking frames produce drift-rates. These are gen-
erated by differencing the prediction for the given date and a few seconds in the
future.

astCtx2tr Generate WCS Transformation astCtx2tr

ACTION :

Generate a world coordinate system transformation.

CALL :

status = astCtx2tr ( ctx, frame, equinox, wavel, ichop, &wcsp, &time )

GIVEN :
ctz struct WCS_CTX WCS context
frame FRAMETYPE type of coordinate system
equinor  struct EPOCH equinox (applied only to mean [a, §] cases)
wavel double wavelength (u)
ichop int chop state (0=A, 1=B, 2=C)
RETURNED :
wesp struct WCS* WCS transformation ([ z,y] to sky)
time double* Gemini raw time at which the transformation was

correct
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RETURNED (function value) :

int status: 0= OK
—1 = illegal frame
—2 = illegal ichop value
—3 = error from timeThenD

—4 = error from astCoco
—b5 = error from slaDs2tp
—6 = error from slaFitxy
NOTE :
The frame cannot be mount [ Az, Fl ] because it refers to the telescope rather than the
sky.
astFitij Fit Instrumental Coordinates to Focal-Plane astFitij
ACTION :

Fit instrumental [, j] coordinates to focal-plane [z, y] coordinates.

CALL :
status = astFitij (n, fpxy, pixij, cij,
&pixis, &pixjs, &perp, &orient )

GIVEN :
n int number of sample points (at least 3)
fpry double[n][2] sets of [z, y] coordinates
pizij double[n][2] corresponding [, j] coordinates
RETURNED :
cij double* affine transformation, [7,j] to [z, y]
pLxis double* 1 scale, z units per 7 unit
pix)s double* 7 scale, z units per j unit
perp double* i/j non-perpendicularity (radians)
orient double* orientation of [, j] with respect to [z, y]

RETURNED (function value) :

int status: 0= OK
—1= bug
—2 = not enough points

—3 = singular
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NOTES :

1.

The coefficients cij describe the affine transformation between instrumental coor-
dinates [, 7] (for example pixel coordinates in the case of a CCD) and focal-plane
coordinates [z,y]. Writing c1j[0-5] as a,b,c,d. €, f:

r=a+bi+cj

y=d+ei+ fj

. The coefficients can be used by the astXtndtr function to extend the WCS transfor-

mation so that it starts from instrumental [4, j] instead of focal-plane [z, y]. This
transformation then relates instrumental coordinates (e.g. pixels) directly to sky co-
ordinates (e.g. J2000 [, d]).

. For [4,7] in pixels and [z, y] in mm, the scales pixis and pixjs are in units of mm

per pixel. For a detector with square pixels, these two numbers should be equal.

The nonperpendicularity, perp. should be zero for the usual case where the instru-
mental [4, j] coordinates are orthogonal.

. The orientation, orient, is the angle of the 4j axis clockwise of +y under the fol-

lowing circumstances:

e The 7 and j axes appear right-handed.
e The z and y axes appear left-handed.

. The first two elements of the cij array are the pixel [, 7] of the origin of the [z, y]

coordinate system. The [z, y] coordinates corresponding to the centre of the pixel
array can be found by directly applying the [7, j] to [z, y] transformation (see note 1).

astFITS Generate FITS Headers astFITS

ACTION :

Express a world coordinate system transformation as FITS headers.

CALL :

status = astFITS (wcsij, frame, eqx, tt,

ctypel, crpixl, crvall, cdeltl, cunitl,
ctype2, crpix2, crval2, cdelt2, cunit2,
pc001001, pc001002, pc002001, pc002002,
radecsys, equinox, mjdobs)

GIVEN :
wesij struct WCS WCS transformation, pixels to sky
frame FRAMETYPE type of sky coordinate system
eqr struct EPOCH equinox (mean [a,d]s only)
it double epoch (TT MJD)
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RETURNED :

ctypel
crpixl
crovall
cdeltl
cunitl
ctype?
crpizd
crval?
cdelt2
cunit?
pc001001
pc001002
pc002001
pc002002
radecsys
EquUinoT
mjdobs

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

FOR OK ¥ ¥ X R ¥ Kk K ¥ ¥ ¥ Kk ¥ ¥ *

char

FITS header record: CTYPE1
FITS header record: CRPIX1
FITS header record: CRVALI1
FITS header record: CDELT1
FITS header record: CUNIT1
FITS header record: CTYPE1
FITS header record: CRPIX2
FITS header record: CRVAL?2
FITS header record: CDELT?2
FITS header record: CUNIT2
FITS header record: PC001001
FITS header record: PC001002
FITS header record: PC002001
FITS header record: PC002002
FITS header record: RADECSYS
FITS header record: EQUINOX

FITS header record: MJD-OBS

RETURNED (function value) :

NOTES :

int

status: 0= OK

—1 = llegal

22

1. The output strings are null-terminated without trailing spaces. However, the recipient

arrays must contain room for the maximum 81 characters to allow for any subsequent
spacefilling.

2. Unused keywords produce empty strings.

3. Here is an

984.044158264385 / pixel i-coordinate at rotator axis

TAN projection

36.000410440627 / RA at rotator axis
degrees per 1st-axis unit

CTYPE1 = ’RA---TAN’ /
CRPIX1 =

CRVAL1 =

CDELT1 = -0.000010086847 /
CUNIT1 = ’deg ) /
CTYPE2 = ’DEC--TAN’ /
CRPIX2 = 438.644955473382 /
CRVAL2 = +44.997610683246 /
CDELT2 = +0.000010110504 /
CUNIT2 = ’deg ) /
PC001001= 0.905380195975 /
PC001002= -0.424601814334 /
PC002001= 0.420605831504 /
PC002002= 0.907243481379 /
RADECSYS= ’FK5 ’ /
EQUINOX = 2000.000000000000 /
MJD-0BS =  49560.643763703702 /

radians per degree
TAN projection

pixel j-coordinate at rotator axis

Dec at rotator axis

example of the set of 17 strings output by this routine:

degrees per 2nd-axis unit

radians per degree

x1i rotation/skew matrix
xj rotation/skew matrix
yi rotation/skew matrix
yj rotation/skew matrix
type of RA/Dec

epoch of mean equator &

element
element
element
element

equinox

epoch of observation (TT MJD)
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astGetctx Obtain Context astGetctx
ACTION :
Obtain the context information needed for generating world coordinate system transfor-
mations.
CALL :

status = astGetctx ( &ctxp)

RETURNED :

ctxp struct WCS_CTX*  WCS context

RETURNED (function value) :

int status: 0 = OK

NOTES :

1. This routine can only be run in an IOC. It builds a WCS context by copying infor-
mation held in the IOC that has been obtained from the TCS via EPICS at some
earlier time.

2. The structure elements ctxp->tel.pox and ctxp->tel.poy are set to zero, rather
than, for example, the current mount pointing origin coordinates. This is because
they have no effect on the WCS, though other routines which use the WCS_CTX
structure do require them.

3. The structure element aoprms [12] is not used by the other WCS functions and is set
to zero.

astGetpo Obtain Pointing Origins astGetpo

ACTION :

Obtain the current pointing origins.

CALL :
status = astGetpo ( pop )
RETURNED :
pop struct PO* pointing origins
RETURNED (function value) :
int status: 0 = OK

NOTE :

This routine can only be run in an 10C. It builds a PO structure by copying information
held in the IOC that has been obtained from the TCS via EPICS at some earlier time.
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astGettr Get Current WCS Transformation astGettr

ACTION :

Obtain the currently-available world coordinate system transformation.

CALL :

status = astGettr ( frame, equinox, wavel, ichop, &wcsp, &time )

GIVEN :
frame FRAMETYPE type of coordinate system
equinor  struct EPOCH equinox (applied only to mean [a, §] cases)
wavel double wavelength ()
ichop int chop state (0=A, 1=B, 2=C)
RETURNED :
wesp struct WCS* WCS transformation ([ z,y] to sky)
time double* Gemini raw time at which the transformation was
correct
RETURNED (function value) :
int status: 0= OK
—1 = error from astGetctx
—2 = error from astCtx2tr
astInvtr Invert WCS Transformation astInvtr
ACTION :
Invert a world coordinate system transformation, from [z, y]-to-sky to sky-to-[ z, y] or vice
versa.
CALL :
status = astInvtr ( wcs, &iwcs )
GIVEN :
wes struct WCS a WCS transformation
RETURNED :
wces struct WCS* the opposite WCS transformation
RETURNED (function value) :
int status: 0= OK
—1 = error from slalnvf

astRot Predict Rotator Angle astRot
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ACTION :

Predict the rotator orientation required to achieve a given field orientation at the pointing

origin.

CALL :

status = astRot ( cosys, eqx, ra, de, date, aoprms, tel, pay, &rot )

GIVEN :
cosys FRAMETYPE reference frame...
eqr struct EPOCH ... for specifying field orientation
ra double RA or azimuth in that frame (radians)
de double Dec or elevation in that frame (radians)
date double epoch of observation (TT MJD
aoprms double[15] star-independent apparent-to-observed parame-
ters
tel struct TELP telescope-dependent parameters
pay double desired position-angle of +y through pointing-
origin
RETURNED :
rot double* required rotator orientation (range +)

RETURNED (function value) :

NOTES :

1.

int status: 0= OK
—1 = failed to converge
—2 = invalid cosys

The desired position-angle, pay, is that of the 4y direction passing through the
pointing-origin. It is zero when 4y points north or up in the specified reference
frame, and increases anti-clockwise on the sky.

. When using this routine, a potential source of confusion is that there are two sorts

of “now”:

date epoch of observation
aoprms[13]  sidereal time

In principle, the date and the sidereal time ought to be consistent. However, in
practice this is unimportant: the date is used for calculating precession etc., while
the sidereal time is used for converting between [a, é] and [ Az, El]. Note, however,
that the sidereal time must be accurate if the field is rapidly rotating as the telescope
tracks.
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3. In most circumstances, one coordinate system will be used for (a) supplying the
target coordinates, (b) controlling the telescope tracking and (c) specifying the field
orientation. In particular, it will be usual for star positions to be supplied as J2000
[, 8], for the telescope to be tracking in J2000 [, d] and for the field to be oriented
with respect to north in J2000 [«,8]. However, there will also be circumstances
where two or three different coordinate systems are involved — the star position may
be supplied as B1950 [a,d], and the rotator angle may be fixed in [ Az, Fl ] for
example. Where this is so, preliminary calls to the astCoco function will be required
before the present routine can be used.

4. The aoprms array contains the star-independent apparent-to-observed parameters:

[o] geodetic latitude (radians)

[1,2] sine and cosine of geodetic latitude

[3] magnitude of diurnal aberration vector

[4] height (metres)

(5] ambient temperature (°K)

(6] pressure (mB)

(7] relative humidity (0-1)

(8] effective wavelength (microns)

[9] tropospheric lapse rate (°K/metre)

[10,11] refraction constants A and B (radians)

[12] longitude + eqn of equinoxes + sidereal AUT (radians)
[13] local apparent sidereal time (radians)

[14] polar-motion adjustment to azimuth (radians)

It can be constructed by calling the SLALIB routine slaAoppa to generate elements
0-13 and then slaPolmo to generate the final element. The sidereal time (element
13) can be selectively updated by calling sladoppat. Adjustment of the refraction
constants can be accomplished most efficiently by using slaAtmdsp to provide new
values for elements 8, 10 and 11.

Element 12 is not used by the present routine. It is included for compatibility with
sladoppat.

5. The function always uses the telescope parameters and so a valid structure must
be supplied. However, for many purposes nominal values for the various telescope
parameters will be perfectly acceptable.

6. The transformations between topocentric and mount coordinates assume tangent-
plane geometry in the focal plane.

7. Azimuths are with respect to terrestrial rather than celestial north.

astS2xy Celestial to Focal-Plane astS2xy

ACTION :

Transform celestial coordinates in a specified celestial coordinate system into a focal-plane
[z, y] position.

CALL :

status = astS2xy ( a, b, frame, equinox, wavel, ichop, &x, &y )
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GIVEN :

a double right ascension or azimuth (radians)

b double declination or elevation (radians)

frame FRAMETYPE type of coordinate system

equinor  struct EPOCH equinox (applied only to mean [a, §] cases)

wavel double wavelength ()

ichop int chop state (0=A, 1=B, 2=C)
RETURNED :

T double* focal-plane x-coordinate (mm)

Y double* focal-plane y-coordinate (mm)

RETURNED (function value) :

int status: 0= OK
—1 = error from astGettr
—2 = error from astInvtr
—3 = error from astS2xyq

NOTES :

1. Azimuths are north-through-east.

2. The [z,y] coordinates are in the Cassegrain focal-plane and rotate with the instru-
ment mount.

astS2xyq Quick Celestial to Focal-Plane astS2xyq
ACTION :
Transform celestial coordinates into a focal-plane [z, y] position using pre-computed WCS
parameters.
CALL :

status = astS2xyq ( a, b, iwcs, &x, &y )

GIVEN :

a double right ascension or azimuth (radians)

b double declination or elevation (radians)

wces struct WCS WCS parameters for the inverse transformation
RETURNED :

T double* focal-plane x-coordinate (mm)

Y double* focal-plane y-coordinate (mm)

RETURNED (function value) :

int status: 0= OK
—1 = star too far from axis
—2 = antistar on tangent plane
—3 = antistar too far from axis
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NOTES :

1. Azimuths are north-through-east.

2. The [z,y] coordinates are in the Cassegrain focal-plane and rotate with the instru-
ment mount.

astSetctx Set the Context Information astSetctx

ACTION :

Set the context information needed for generating world coordinate system transforma-
tions.

CALL :

status = ( ctxa )
RETURNED :
ctza double* array containing the context
RETURNED (function value) :
int status: 0 = OK

NOTE :

This routine copies data into the IOC’s global memory. It is intended only to be called by
the EPICS record that copies data from the TCS.

astSimctx Simulate Context astSimctx
ACTION :
Generate a simulated context from which world coordinate system transformations can be
obtained.
CALL :

status = astSimctx (tai,
elong, phi, hm,
tdc, pmb, rh, tlr,
wl, tel, m2xy,
al, bl, cosys, equinox,

&ctxp )
GIVEN :
Time and place
tai double TAT (MJD)
elong double east longitude (true, radians)
phi double latitude (true geodetic, radians)
hm double height above reference spheroid (metres)
tde double ambient temperature (°C)
pmb double pressure (millibar)
rh double relative humidity (range 0-1)

tlr double tropospheric lapse rate (°K/metre)
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Telescope
wl double effective wavelength (um)
tel struct TELP telescope-dependent parameters
m2zy double[3][2] M2 tip/tilts for chop A/B/C
Target
al double right ascension or azimuth (radians)
b1 double declination or elevation (radians)
cosys FRAMETYPE coordinate system
equinor  struct EPOCH equinox (mean [a,d] only)

RETURNED (argument) :

ctxp struct WCS_CTX*  WCS context

RETURNED (function value) :

NOTES :

int status: 0= OK
—1 = error calling timeThenD
—2 = error calling astCoco

1. This function can be used online, in an IOC, or offline, in a Unix host.

. Normally, the context is obtained from the telescope control system and applies to

the circumstances prevailing at the time. The present routine allows a context to be
generated for a different set of circumstances. This technique has both online and
offline uses. Online, it can be used to simulate a future observation, for example
so that guide probe coordinates can be predicted. Offline, it has applications in
reconstructing past observations and in pre-observing planning.

. For the present function to work, the time system must be operating. For online use,

this means that timeInit must have been called. For offline use, timeOffline must
have been called. An attempt to use the present function with previously having
started the time system produces an error status.

. The structure element aoprms [12] is not used by the other WCS functions and is set

to zero.

. When setting up the tel telescope-parameter structure, note that the instrument

mount position-angle is the mechanical one, i.e. with respect to the vertical rather
than north. When starting from sky position-angle, use the function astRot to
determine the rotator angle that will be needed.

6. The target coordinates [a1,b1] are for the epoch of observation (i.e. tai).

If the pressure is not known, it can be estimated using the expression:

pmb=1013.25*exp(-hm/8149.9415).

astXtndtr Extend WCS to Instrument Coordinates astXtndtr
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ACTION :

Extend a world coordinate system transformation to start from instrumental [, j] instead
of focal-plane [z, y].

CALL :

status = astXtndtr (cij, wcsxy, &wcsxy )

GIVEN :

cij double[6] affine transformation, [, j] to [z, y]

weszy struct WCS WCS transformation ([ z,y] to sky)
RETURNED :

wesiy struct WCS extended WCS transformation ([, j] to sky)

RETURNED (function value) :
int status: 0 = OK

NOTE :

The coefficients cij describe the affine transformation between instrumental coordinates
[7,7] (for example pixel coordinates in the case of a CCD) and focal-plane coordinates
[2,y]. Writing cij[0-5] as a,b,c,d, e, f:

r=a+bi+cj

y=d+ei+fj

The coefficients can be generated by calling astFitij, or alternatively slaFitxy.

astXy2s Focal-Plane to Celestial astXy2s

ACTION :

Transform a focal-plane [z, y] position into a specified celestial coordinate system.

CALL :

status = astXy2s ( x, y, frame, equinox, wavel, ichop, &a, &b )

GIVEN :
T double focal-plane x-coordinate (mm)
Y double focal-plane y-coordinate (mm)
frame FRAMETYPE type of coordinate system
equinor  struct EPOCH equinox (applied only to mean [a, §] cases)
wavel double wavelength ()

ichop int chop state (0=A, 1=B, 2=C)
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RETURNED :
a double* right ascension or azimuth (radians)
b double* declination or elevation (radians)

RETURNED (function value) :

int status: 0= OK
—1 = error from astGettr
—2 = error from astXy2sq

NOTES :

1. The [z,y] coordinates are in the Cassegrain focal-plane and rotate with the instru-
ment mount.

2. Azimuths are north-through-east.

astXy2sq Quick Focal-Plane to Celestial astXy2sq
ACTION :
Transform a focal-plane [z, y] position into celestial coordinates using pre-computed WCS
parameters.
CALL :

status = astXy2sq ( x, y, wcs, &a, &b )

GIVEN :
T double focal-plane x-coordinate (mm)
Y double focal-plane y-coordinate (mm)
wes struct WCS WCS parameters ([ z, y] to sky)
RETURNED :
a double* right ascension or azimuth (radians)
b double* declination or elevation (radians)

RETURNED (function value) :

int status: 0 = OK (always)

NOTES :

1. The [z,y] coordinates are in the Cassegrain focal-plane and rotate with the instru-
ment mount.

2. Azimuths are north-through-east.
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4.1.4 DEFINITIONS
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The routines just described use several structure and enumeration definitions. For convenience,
the current versions of these are listed below. However, note that they are subject to change

and that the #include files are the definitive source of information about them.

Defined in a
WCS_CTX
WwCsS
FRAMETYPE
PMPXRV
TELP
EPOCH
PO

struct PMPXR
int
double
double
double
double
};

struct WCS_C
double
struct
double
double
double
};

struct WCS {
double
double
};

typedef enum

struct EPOCH
double
char

};

struct TELP
double

stLib.h:
struct
struct
enum
struct
struct
struct
struct

v {
pm;
pmRA;
pmDec;
pPx;
Irv;

TX {
abo[2];
TELP tel;
aoprms [15]
m2xy [3] [2]
time;

abo[2];
coeffs[6];

{ AZEL_MNT = 0,
AZEL_TOPO = 1, /%

WCS context

WCS transfor
coordinate s
proper motio
telescope pa
B or J epoch
Pointing ori

/* False = p
/* RA proper
/* Dec prope
/* Parallax
/* Radial ve

/* Mount

/* Telesc
;  /* Appare
; /* M2 tip

/* Gemini

/* Celest
/* Affine

/*

APPT = 2, /*
FK5 = 3, /*
FK4 = 4 /*

} FRAMETYPE;

{
year;
type;

{
f1;

/* Epoch: B
/* Type of e

/* Focal len

mation parameters

ystem IDs

n, parallax, radial velocity
rameters

gin structure

roper motion inertially-zero */
motion (radians/year) */

r motion (radians/year) */
(arcsec) */

locity (km/s) */

Az/El, pre-flexure */

ope parameters */
nt-to-observed parameters */
/tilt (3 chop states) */

raw time */

ial coordinates at x=y=0 */
transformation coefficients */

Mount Az/El, pre-flexure */
Topocentric Az/E1l */

Geocentric apparent RA/Dec */

IAU 1976 RA/Dec, any equinox */

Pre IAU 1976 RA/Dec, any equinox */

year (B), TT Jyear (J) */
poch (’B’, ’J’ or ’ ’) %/

gth (metres) */
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double rpa; /* Rotator orientation (radians) */
double an; /* Azimuth axis tilt NS (radians) */
double aw; /* Azimuth axis tilt EW (radians) */
double pnpae; /* Az/El nonperpendicularity (radians) */
double ca; /% LR collimation (metres) */

double ce; /% UD collimation (metres) */

double pox; /* Pointing-origin x-component (mm) */
double poy; /* Pointing-origin y-component (mm) */

};

Defined in timelib.h:
typedef enum {

TAI, /* International Atomic Time */
UTC, /* Coordinated Universal Time */
UT1, /* Universal Time */

TT, /* Terrestrial Time */

TDB, /* Barycentric Dynamical Time */
GMST, /* Greenwich Mean Sidereal Time */
LAST /* Local Apparent Sidereal Time */

} timescale;

4.2 SLALIB Functions

The SLALIB library contains essentially all the transformations required by the Gemini systems
in addition to a large number of other useful functions. The library was used to implement
the above Gemini astrometry functions and is also directly usable by the Gemini subsystems.
The list below includes only a small selection of SLALIB functions, ones potentially useful
in conjunction with the Gemini WCS facilities. Omitted from the list are functions dealing
with transformation between celestial reference-frames; such transformations should be handled
with astCoco rather than with direct calls to SLALIB functions (except for ecliptic or galactic
coordinates, which astCoco doesn’t support).

Many of the SLALIB routines exist in both float and double forms; only the double forms
appear in the list below. In addition, many of the routines exist in forms which use [z, y, z ]
rather than spherical coordinates; the list concentrates on the latter.

STRING DECODING:
e slalntin — convert free-format string into long integer.
e slaDfltin — convert free-format string into double real.

e slaDafin — convert free-format string from deg,arcmin,arcsec etc. to radians (double).
SEXAGESIMAL CONVERSIONS:

e slaDtf2r — hours, minutes, seconds to radians.
e slaDr2tf — radians to hours, minutes, seconds.

e slaDaf2r — degrees, arcminutes, arcseconds to radians.
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e slaDr2af — radians to degrees, arcminutes, arcseconds.

ANGLES:

e slaDrange — Normalize angle into range 4.
e slaDranrm — Normalize angle into range 0—27.
e slaDsep — Distance between two stars.

e slaDbear — Position angle of one star with respect to another.

ASTROMETRY:

5

e slaDs2tp — Spherical coordinates to tangent plane.

e slaDtp2s — Tangent plane coordinates to spherical.

e slaDtps2c — Field centre from star [, §] and tangent plane coordinates.
e slaPcd — Apply pincushion/barrel distortion.

e slaUnpcd — Remove pincushion/barrel distortion.

e slaFitxy — Fit a linear model to relate two sets of [z, y] coordinates.

e slaPxy — Compute predicted coordinates and residuals.

e slalInvf — Invert a linear model.

e slaXy2xy — Transform one [z, y].

e slaDcmpf — Decompose a linear fit into scales ete.

PROGRAMMING EXAMPLES

5.1 Predicting the Focal-Plane Coordinates of a Star Image

#include <timeLib.h>
#include <slalib.h>
#include <astLib.h>

/%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%

Demonstration of offline use of the Gemini World Coordinate
System facilities. A context is simulated, for a given time,
target and pointing origin, and then the [x,y] coordinates
corresponding to a specified [RA,Dec] are obtained.

The ideal answer is:
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*k
*k
*k
*k
*%
*%
*%
*%
*%
*%

*/

[x,y] = +179.000000 -152.000000 (mm)
A typical output from this program is:

[x,y] = +178.999751 -152.000004
P.T.Wallace 21 March 1997

Copyright 1997 RAL. All rights reserved.

#tdefine AS2R 4.84813681109536e-6
##define D2R 0.0174532925199433
int main ( )

{
/*

/%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%

*/

/*

For this test, asssume M2 is at neutral tip/tilt in all chop states */
double m2xy[31[2] = { { 0.0, 0.0},
{ 0.0, 0.0},
{o0.0, 0.0}
};

struct TELP tel;

struct WCS_CTX ctx;

double track_ra, track_dec, track_wl,
test_ra, test_dec, test_wl;

FRAMETYPE track_frame, test_frame;

struct EPOCH track_equinox, test_equinox;

struct WCS wcs, iwcs;

double tai, elong, phi, hm, dleap, dat, dut, tdc, pmb, rh, tlr,
timestamp, x, y;

int j;

In online applications the information set out below would come from
the TCS automatically as part of the ''get WCS context" call. For
offline applications like the present one, default values will
normally be adequate. O0Only if the telescope is grossly displaced
from its simulated orientation will inaccuracies in the final result
start to appear, caused by the consequent imperfect prediction of the
field distortions due to refraction. However, the rotator position
angle must be correct for the given time, and obviously the target
coordinates, pointing origin and focal length have to be correct.

The values used here come from the TCS/PTW/4 test case.

Time service. */
dleap = 50083.0;

35
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dat
dut

29.0;
0.746;

/* Site location and meteorological readings. */
elong = -2.71349330022745;
phi = 0.346040321258437;
hm = 4145.0;
tdc = 1.85;
pmb = 605.0;
rh = 0.8;
tlr = 0.0065;

/* Telescope. */

tel.f1l = 128000.0;
tel.rpa = 30.0 * D2R;
tel.an = -12.0 * AS2R;
tel.aw = -5.0 * AS2R;
tel.pnpae = 8.0 * AS2R;
tel.ca = -110.0 * AS2R;
tel.ce = 22.0 * AS2R;

/*

*% ====
**x TIME
*% ====

*/

/* Epoch for the simulation. */
tai = 49560.643391203703;

/* Initialize the time system for offline use. */
if ( j = timeOffline ( tai, elong, phi, hm, dleap, dat, dut ) ) {
printf ( "bad status from timeOffline: %d\n", j );
return -1;

/*
*%

** GENERATE A WCS TRANSFORMATION
*k

*/

/* Pointing origin, tracking frame and target. */
tel.pox = 179.0;
tel.poy = -152.0;
track_frame = FK4;
track_equinox.type = ’B’;
track_equinox.year = 1975.0;
track_ra = 0.365544667419779;
track_dec = 0.331903446087589;
track_wl = 0.5;

/* Create a WCS context for the above pointing state. */
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/%
*k
*k

*/

/*

/*
*%
*%
*%

*/

/%
/%

/*

if ( j = astSimctx ( tai,
elong, phi, hm, tdc, pmb, rh, tlr, track_wl,
tel, m2xy,

track_ra, track_dec, track_frame, track_equinox,

&etx ) ) A
printf ( "bad status from astSimctx: %d\n", j );
return -1;

NOTE: in the online case, all of the above code is
replaced by a call to the astGetctx function.

Translate the context into a focal-plane-to-sky WCS transformation.
test_frame = FK5;
test_equinox.type ’J7
test_equinox.year = 2000.0;
test_wl = 0.5;
if ( j = astCtx2tr ( ctx, test_frame, test_equinox,
test_wl, 0, &wcs, &timestamp ) ) {
printf ( "bad status from astCtx2tr: %d\n", j );
return -1;

PREDICT THE [X,Y] FOR A GIVEN [RA,DEC]

Generate the sky-to-focal-plane transformation by inverting the */
focal-plane-to-sky transformation that we have just created. */
if ( j = astInvtr ( wecs, &iwes ) ) {

printf ( "bad status from astInvtr: %d\n", j );

return -1;

}

Apply the transformation to turn a J2000 [RA,Dec] into an [x,y]. */
test_ra = 0.371441549993331;
test_dec = 0.334169069920611;
if ( j = astS2xyq ( test_ra, test_dec, iwcs, &x, &y ) ) {
printf ( "bad status from astS2xyq: %d\n", j );
return -1;
} else {
printf ( "[x,y] = %+12.6f %+12.6f\n", x, y );
}

return O;

*/

37
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5.2 Generating FITS Headers for a Sky Imager

#include <timeLib.h>

#include <slalib.h>

#include "astLib.h"

/%

Xk — — — — — - - - - - —

* W CS demo 2

*k — — — — - - - - - - —

*k

** Demonstration of offline use of the Gemini World Coordinate System
** facilities. We consider the case of using FITS headers to describe
** observations made with a CCD sky imager.

*k

** We have at our disposal the following information:

* ok

**% . For three sample locations on the detector, the pixel coordinates
*k and the instrument mount coordinates. (For the purposes of

*k planning an observation, the locations might be three corners

*k of the detector, and the coordinates obtained from a knowledge of
*k the geometry of the detector and the nominal mounting arrangements.
*k For online use, the three locations might be observed star centroids
*k obtained from a start-of-night online calibration procedure.)

* ok

*% . The approximate time of observation.

* ok

** . The J2000 RA/Dec of the centre of the detector.

* ok

** . Assumed telescope parameters (not critical for this application,

*k in fact).

* ok

** We wish to calculate:

*ok

** . The instrument mount position angle required to align the

* ok detector’s y-axis to J2000 north through the given [RA,Dec].

ok

*% . The FITS WCS headers for the given position-angle, [RA,Dec] etc.
ok

**% Typical output:

*k
** i/j scales = 22.496 / 22.604 micron
**% i/j non-perp = -0.058 deg

** orientation = +170.006 deg

**% CCD centre at +2.008 / -4.985

** rotator angle +139.209555 deg

*¥ RA/Dec of BLC = 36.0158078524 / +44.9935268211 deg
** RA/Dec of TRC 35.9841884447 / +45.0064708578 deg
** Centre to TR = 28.857862 mm

** CTYPE1 = ’RA-—-TAN’ / TAN projection

**% CRPIX1 = 984.048322324526 / pixel i-coordinate at rotator axis
** CRVAL1 = 36.001799989450 / RA at rotator axis

** CDELT1 = -0.000010074244 / degrees per 1st-axis unit

**% CUNIT1 = ’deg ’ / radians per degree

38



TCS/PTW/8.4 (TN_PS_G0045)

** CTYPE2 = ’DEC--TAN’ / TAN projection

**% CRPIX2 = 438.647166460703 / pixel j-coordinate at rotator axis
** CRVAL2 = +44.9979573155565 / Dec at rotator axis

** CDELT2 = +0.000010123061 / degrees per 2nd-axis unit

** CUNIT2 = ’deg ’ / radians per degree

**% PC001001= 0.999999860620 / xi rotation/skew matrix element
** PC001002= -0.000527976691 / xj rotation/skew matrix element
** PC002001= -0.000577633366 / yi rotation/skew matrix element
** PC002002= 0.999999833170 / yj rotation/skew matrix element
** RADECSYS= ’FK5 ’ / type of RA/Dec

** EQUINOX = 2000.000000000000 / epoch of mean equator & equinox
** MJD-0BS =  49560.643763703702 / epoch of observation (TT MJD)
*k

*% P.T.Wallace 25 April 1997

*k

** Copyright 1997 RAL. All rights reserved.

*/

#define AS2R 4.84813681109536e-6
#define D2R 0.0174532925199433
#define PI 3.141592653589793238462643

/* CCD dimensions (pixels) */
#define IPIX 2220.0
#define JPIX 1280.0

int main ( )

{

/* For this test, asssume M2 is
double m2xy[3]1[2] = {

at neutral tip/tilt in all chop states */

{ 0.0, 0.0},

{ 0.0, 0.0},

{ 0.0, 0.0}

};

/* Sample points: focal-plane x/y, pixel i/j */

double fpxy[4][2], pixij[4]1[2];

/* Transformation coefficients, i/j to x/y */

double cij[6];

/* WCS transformations, focal-plane and pixel coordinates to sky */

struct WCS wcs, wcsij;

/* Miscellaneous */

double pixis, pixjs, perp, orient, pa;

struct TELP tel;

struct WCS_CTX ctx;

double track_ra, track_dec, track_wl;

FRAMETYPE track_frame;

struct EPOCH track_equinox;

double tai, elong, phi, hm, dleap, dat, dut, tdc, pmb, rh, tlr,
timestamp, x, y, tt, ut, aoprms[15], r, d, xi, eta;

int j;
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char ctypei1[81], crpix1[81], crvali[81], cdelt1[81], cuniti[81],
ctype2[81], crpix2[81], crval2[81], cdelt2[81], cunit2[81],
pc001001[81], pc001002[81], pc002001[81], pc002002[81],
radecsys[81], equinox[81], mjdobs[81];

/%
*%
**% GENERAL CONTEXT
*%
*k

**% In online applications the information set out below would come from

**% the TCS. For offline applications like the present one, default values
** will normally be adequate. Only if the telescope is grossly displaced

** from its simulated orientation will inaccuracies in the final result
** start to appear, caused by the consequent imperfect prediction of the
**% field distortions due to refraction. However, the rotator position
** angle must be correct for the given time, and obviously the target

** coordinates, pointing origin and focal length have to be correct.

*/

/* Time service. */
dleap = 50083.0;
dat = 29.0;
dut = 0.746;

/* Site location and meteorological readings. */
elong = -2.71349330022745;
phi = 0.346040321258437;

hm = 4145.0;
tdc = 1.85;
pmb = 605.0;
rh = 0.8;

tlr = 0.0065;

/* Telescope. */

tel.f1l = 128000.0;
tel.rpa = 30.0 * D2R;
tel.an = -12.0 * AS2R;
tel.aw = -5.0 * AS2R;
tel.pnpae = 8.0 * AS2R;
tel.ca = -110.0 * AS2R;
tel.ce = 22.0 * AS2R;

/* Tracking frame and target information. */
track_frame = FKb;
track_equinox.type ’J7;
track_equinox.year = 2000.0;
track_ra = PI / 5.0;
track_dec = PI / 4.0;

/*

* %k

40
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**% STMULATE TIME SERVICE
* %k

*/

/* Epoch for the simulation. */
tai = 49560.643391203703;

/* Initialize the time system for offline use. */
if ( j = timeOffline ( tai, elong, phi, hm, dleap, dat, dut ) ) {
printf ( "bad status from timeOffline: %d\n", j );
return -1;

/* TAI to raw time. */
timestamp = timeTail2raw ( tai );

/* Raw time to TT and UT. */

if ( j = timeThenD ( timestamp, TT, &tt ) ) {
printf ( "bad status from timeThend: %d\n", j );
return -1;

¥

if ( j = timeThenD ( timestamp, UT1, &ut ) ) {
printf ( "bad status from timeThend: %d\n", j );
return -1;

/*
*%
**x DETERMINE PIXEL TO FOCAL PLANE TRANSFORMATION
*%

*/

/* Pixel i/j and focal-plane x/y for four sample points (with */
/* noise, as if measured during start-of-night calibrations). */
pixij[0][0] = 51.3;
pixij[0][1] = 49.5;
fpxy[0][0] = -19.15;

fpxy[0][1] = 12.31;
pixij[11[0] = 50.7;
pixij[11[1] = 1227.8;

fpxy[11[0] = -23.77;

fpxy[11[1] = -13.95;
pixij[2]1[0] = 2179.6;
pixij[21[1] = 1230.4;
fpxy[2][0] = 23.36;
fpxy[2][1] = -22.26;
pixij[3]1[0] = 2182.3;
pixij[3]1[1] = 53.1;
fpxy[3]1[0] = 28.08;
fpxy[3]1[1] = 3.90;
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/* Perform the i/j to x/y fit. */
if ( j = astFitij ( 4, fpxy, pixij, cij,
&pixis, &pixjs, &perp, &orient ) ) {

printf ( "bad status from astFitijxy: %d\n", j );

return -1;
}
printf ("i/j scales = %6.3f / %6.3f micron\n",

fabs ( pixis ) * 1le3, fabs ( pixjs ) * 1e3 );

printf ("i/j non-perp = %+7.3f deg\n", perp /D2R );
printf ("orientation = %+8.3f deg\n", orient / D2R );

/* Set pointing origin to centre of CCD. */
slaXy2xy ( ( IPIX + 1.0 ) / 2.0, ( JPIX + 1.0 ) / 2.0, cij,
&tel.pox, &tel.poy );
printf ( "CCD centre at %+7.3f / %+7.3f\n", tel.pox, tel.poy );

/*
*%
**x DETERMINE ROTATOR ANGLE
*%

*/

/* Generate the current apparent-to-observed parameters. */
sladoppa ( ut, 0.0, elong, phi, hm, 0.0, 0.0,
tdc + 273.15, pmb, rh, track_wl, tlr, aoprms );
aoprms[14] = 0.0;

/* Position-angle of +y when +j points north. (The angle */
/* "orient" was obtained earlier, from the i/j to x/y fit. */

/* It is the orientation of the detector i/j coordinate */
/* system with respect to the instrument-mount x/y */
/* coordinate system.) */

pa = orient + PI;

/* Rotator orientation for that condition at the pointing origin. */
if ( j = astRot ( track_frame, track_equinox, track_ra, track_dec,
tt, aoprms, tel, pa, &tel.rpa ) ) {
printf ( "bad status from astRot: %d\n", j );
return -1;

}
printf ( "rotator angle = %+12.6f deg\n", tel.rpa / D2R );
/*
*ok
** GENERATE PIXEL-TO-SKY WCS TRANSFORMATION
*ok
*/

/* Simulate a WCS context. The telescope information was given */

/* earlier, and the rotator angle has just been changed to that */

/* required to achive the specified detector orientation. */
if ( j = astSimctx ( tai,
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elong, phi, hm, tdc, pmb, rh, tlr, track_wl,
tel, m2xy,
track_ra, track_dec, track_frame, track_equinox,
etx ) ) {

printf ( "bad status from astSimctx: %d\n", j );

return -1;

X

/* Translate the context into a focal-plane-to-sky WCS transformation. */
if ( j = astCtx2tr ( ctx, track_frame, track_equinox,
track_wl, 0, &wcs, &timestamp ) ) {
printf ( "bad status from astCtx2tr: %d\n", j );
return -1;

}

/* Combine the i/j-to-x/y and x/y-to-sky models. */
if ( j = astXtndtr ( cij, wcs, &wcsij ) ) {
printf ( "bad status from astXtndtr: %d\n", j );
return -1;

}

/* Transform the BL and TR corner pixel coordinates to RA/Dec. */
if ( j = astXy2sq ( 0.5, 0.5, wecsij, &r, & ) ) {
printf ( "bad status from astXy2sq: %d\n", j );
return -1;
}
printf ( "RA/Dec of BLC = %15.10f / %+15.10f deg\n", r / D2R, 4 / D2R );
if ( j = astXy2sq ( IPIX + 0.5, JPIX + 0.5, wcsij, &r, &d ) ) {
printf ( "bad status from astXy2sq: %d\n", j );
return -1;
}
printf ( "RA/Dec of TRC = %15.10f / %+15.10f deg\n", r / D2R, 4 / D2R );

/* Measure semi-diagonal in mm. */
slaDs2tp ( r, 4, track_ra, track_dec, &xi, &eta, &j );
it (3o
printf ( "bad status from slaDs2tp: %d\n", j );
return -1;
}
printf ( "Centre to TR = %10.6f mm\n",
sqrt ( xi * xi + eta * eta ) * tel.fl );

/*
*%

**% GENERATE THE FITS HEADERS
*k

*/

if ( j = astFITS ( wcsij, track_frame, track_equinox, tt,
ctypel, crpixl, crvall, cdeltl, cunitl,
ctype2, crpix2, crval2, cdelt2, cunit2,
pc001001, pc001002, pc002001, pc002002,
radecsys, equinox, mjdobs ) ) {
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printf ( "bad status from astFITS: %d\n", j );
return -1;

}

printf ( "%s\n", ctypel );
printf ( "%s\n", crpixl );
printf ( "%s\n", crvall );
printf ( "%s\n", cdeltl );
printf ( "%s\n", cunitl );
printf ( "%s\n", ctype2 );
printf ( "%s\n", crpix2 );
printf ( "%s\n", crval2 );
printf ( "%s\n", cdelt2 );
printf ( "%s\n", cunit2 );
printf ( "%s\n", pc001001 );
printf ( "%s\n", pc001002 );
printf ( "%s\n", pc002001 );
printf ( "%s\n", pc002002 );
printf ( "%s\n", radecsys );
printf ( "%s\n", equinox );
printf ( "%s\n", mjdobs );
return O;



