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1 INTRODUCTION

This paper presents algorithms for open-loop pointing and tracking of the Gemini 8-metre al-
tazimuth telescopes.! We discuss the relevant standard timescales and reference frames, and
give recipes for achieving the required transformations. Various telescope pointing corrections
are also taken into account; however, a detailed description of the pointing models is not yet
available and in any case has little impact on the overall computational strategy, which is the
subject of the present paper.

Vector and matrix methods are used throughout. Despite an emphasis on rigour, efficiency
considerations are not overlooked. and the strategy includes techniques for avoiding unnecessary
consumption of computer time.

To avoid spelling out well-established (and tedious) positional-astronomy procedures, the present
report assumes the availability of the Starlink SLALIB library (see Starlink User Note 67). The
SLALIB routines are available from Starlink in Fortran or from the author in a proprietary C
version that is available free to non-profit research institutes (including the Gemini project). The
Fortran version is ANSI-standard apart from minor and commonplace infringements (mostly cov-
ered by the US Department of Defense extensions). The C version is ANSI-standard throughout.
Other relevant Starlink software includes the COCO star coordinate conversion utility (SUN/56)
and the TPOINT telescope pointing analysis package (SUN/100). The COCO program contains
a prescription for most of the star coordinate transformations that will be needed to control the
Gemini telescopes and may be useful for reference; TPOINT is a possible tool for analyzing the
pointing of the Gemini telescopes during commissioning and operation, or its algorithms could
be used in the construction of new tools and techniques. package (SUN/100). Both COCO and
TPOINT are available in Fortran. In the case of COCO, there is no C version; a proprietary C
version of TPOINT exists but there are, at present. no arrangements for Gemini to use it.

Key parts of the algorithm are illustrated with sample code. Fortran is used, though the op-
erational implementation uses C (plus EPICS) exclusively. More complete sample code, this
time written in C, is set out in the document TCS/PTW /4, together with worked-out numerical
examples.

!The methods used are similar to those in Proposals for Keck Telescope Pointing Algorithms by P.T. Wallace.
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n.b. This document was first published before the Gemini TCS code was developed; the latter
is always referred to in the future tense here, even though later revisions of the present report
appeared after the TCS software was developed.

2 GENERAL STRATEGY

2.1 Basic Transformation Flow

Figure 1 identifies the main steps the TCS will use to transform a position in the user’s chosen
coordinate system (called ‘tracking coordinates’) into one that the MCS servo software can
directly compare with the (corrected) azimuth and elevation encoder readings. At this stage
nothing is being said about which calculations should be performed at what frequency, and to
what extent interpolation techniques will be used to keep CPU-time consumption at reasonable
levels; we will return to these topics later.

In Figure 1, the coordinates marked — are those appropriate for applications software to supply
as demands, including scan patterns and adjustment via the TCS handset, to start the sequence
of pointing calculations. It will be necessary in different cases to perform some preprocessing
before target coordinate data are ready for use as tracking coordinates; for example it is appro-
priate to correct a mean [a,¢] for space motion and parallax before use as a demand because
these apply to the star itself rather than to the reference frame.

The suggested TCS-to-MCS update rate of 20Hz is fast enough to give the appearance of
instantaneous response to pushbutton demands and is unlikely to limit appreciably the dynamic
response available to programs which coordinate telescope movement with data acquisition.
Even 10 Hz may prove to be adequate in the unlikely event that CPU economy is an issue.
The frequency at which the MCS causes the servo systems to compare demanded position with
actual position will be considerably higher, involving interpolation of the demands from the
TCS. Further details of this process are outside the scope of the present paper.

The philosophy presented here is to carry out all the positional astronomy calculations rigorously,
as far as is reasonably possible. Such a policy (a) will not avoidably erode the error budget and
(b) will facilitate comparison with astrometric software available elsewhere. Where excessive
cost — for example in CPU time — can be demonstrated, this policy will be relaxed.

2.2 The Virtual Telescope

The tracking coordinates are an interface to the wvirtual telescope, a simulation of an ideal device
produced by hiding, as far as it makes sense to, the defects of the real telescope under layers of
software. The virtual telescope is generally the only one that should interest the astronomer and
which data-acquisition procedures should deal with, but there will be some respects in which
display or control of the real telescope is required. For example:

1. When a new target is presented, the virtual telescope will be in position instantaneously.
whereas the real telescope will clearly take time slewing and settling before observing can
begin. Both the astronomer and automated data acquisition systems will need to know
the truth. In the slewing case, the astronomer will probably be satisfied simply by looking
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Figure 1: The TCS/MCS Pointing Flow
The set of transformations shown describes the relationship between the target position supplied
to the TCS (one of those marked —) and the desired telescope encoder readings received by
the MCS. There are two major transformations: [a, 8] to [—=h,é], and [—h,é] to [ Az, El]. The
others are all minor.
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at a readout of mount [ Az, Fl ], but will expect a readout of distance or time to go, and
perhaps a picture of the telescope orientation. The TCS could produce an ‘in position and
tracking’ status once both the position and velocity errors fall within specified limits. The
status is accessible to data-acquisition systems (which as well as knowing when to start an
exposure might be able to close the shutter during wind gusts or moments of poor seeing)
and will also be displayed on the TCS control console to inform the telescope operator.

2. Cable wraps and mechanical interference phenomena will affect slewing strategy, and the
TCS will require advice from outside about when to go the long way round. This might
come from the OCS, based upon future targets for example, or through the TCS control
console.

3. Users will expect and need real-time displays of mount dynamics and guiding activity, and
the virtual-telescope philosophy in no way discourages such information being available
(though it may be subsystems such as the MCS and A & G that actually provide such
displays, rather than the TCS).

2.3 Base and Offset from Base

Functions which move the telescope will be able to specify the tracking position (one of those
marked — in Figure 1) as a base (two numbers, €.¢g. a and ) and an offset from base (a further
two numbers, e€.g. Aa and A¢). Although the tracking loop has only to add the two pairs
together, which the demanding software could equally well do, the value of having the TCS
provide an offset-from-base mechanism as part of the tracking system relieves the demanding
software of remembering where it started (useful when cleaning up after an abort) and also helps
the telescope operator understand what is going on during a complex scanning or offsetting
manoeuvre.

A base and offset concept is also valuable when specifying the pointing-origin positions and the
collimation corrections.

3 REFERENCE FRAMES

3.1 Introduction

In general the coordinates of the target object will need to be converted, before use, from the
form in which they were entered to the form required to begin the pointing flow. Two reference
frames (or, loosely, coordinate systems) will thus need to be allowed for simultaneously: target
coordinates, in which the position of the target object is supplied, and tracking coordinates,
which start the pointing flow. The required conversions are included in the repertoire of the
Starlink COCO program, which will be used as a check during TCS software development. It
is probably worth doing full COCO-style transformations even though this may appear to be
excessively fussy. Certainly offsetting from nearby bright stars will be more assured if small
effects such as parallax have been thought about and allowed for.

Note that distinguishing between the target and tracking reference frames shows why the cor-
rections for space motion and parallax are not part of the pointing flow: they are properties
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of the source and not of the reference frame. Thus the [a, ] which starts off the flow is the
position at the current epoch in the nominated tracking reference frame.

Observers will want to work in several different reference frames, in some cases, it has to be
said, without appreciating the subtlety of what they are doing. For example, an astronomer
who, following some published recipe, first points the telescope at the B1950 [, ¢ ] of the Crab
Pulsar and then moves 300" due north to a particular spot in the Nebula rightly expects a to
stay fixed and ¢ to change by 300"; if, however, he were to enter the position in J2000 coordinates
instead and then offset by the same amount, he would discover that the telescope was positioned
over 1" from the correct point, due to the rotation between the B1950 and J2000 systems. The
consequence of this is that the pointing flow has to start in the user’s preferred coordinate
system and cannot, for example, always be apparent [a,é]. This alone considerably increases
the amount of computation that must be done during tracking, compared with past practice.

Obvious tracking reference frames to consider include not only equatorial and altazimuth coor-
dinates but also ecliptic, galactic, etc. However, there is considerable doubt whether the latter
options are really useful, and they have been left out of the initial Gemini design. (They may,
however, be useful for information displays and logging.) The required transformations are all
in COCQ’s repertoire and there will be no problem in providing them if users really want them.
It is possible some radio-astronomers might want an exotic flavour of mean [a,é] where the
reference frame is the old pre- IAU 1976 one but the E-terms of aberration are not included.
Again, COCO specifies how to do this.

Summarizing, the Gemini TCS will both (i) accept target positions and (ii) control the telescope
in at least the following coordinate systems:

e Mean [a, 6], old style (i.e. before the TAU 1976 resolutions, loosely called FK4 and fre-
quently referred to the mean equator and equinox of Besselian epoch 1950.0 — hence B1950),
of any equinox.

e Mean [a,d], new style (i.e. after the TAU 1976 resolutions, loosely called FK5 and fre-
quently referred to the mean equator and equinox of Julian epoch 2000.0 — hence J2000),
of any equinox.

o (Topocentric) apparent [a, ], new style. This would be a suitable form for the TCS to
accept input from planetary ephemeris programs, which would have already allowed for
parallax (annual and diurnal) and planetary aberration, and would constantly update the
demand [a,é] to track the object (all of which are essential for the Moon and at least
desirable for the planets).

e Observed [ Az, Fl]. This may be useful occasionally where a data-acquisition application
wants to do all the other transformations itself — satellite tracking would be an example.

e Mount [ Az, El]. The obvious applications are engineering ones — parking the telescope
for example.

Both the target and tracking reference frames will default to FK5 J2000.

When entering target data, there will be both separate commands for specifying the coordi-
nate system and for entering coordinates, or the target coordinate system will be specified by
parameters supplied along with the coordinates.
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3.2 Some Remarks on Target Mean Place Data Entry

The way input coordinates are supplied by the user depends heavily on the details of the TCS
control console displays and the interfaces to the OCS. the details of which have yet to be
established. However, some general comments are possible concerning handling mean [a, ]
target positions, which will be by far the most common sort.

As mentioned in the previous section, two styles of mean [a,¢], which we will call FK4 and
FKb5 for short, will need to be supported. Very often the telescope user will not be aware of
the subtle differences between them (which can lead to mistakes of up to an arcsecond) and the
commands he uses will need to have helpful defaulting rules so that the difficulties are masked
and he gets the right result without understanding the fine details.

Both sorts of mean [a, ¢ ] require the following data if they are to be completely specified:

e The [a, ] position itself.
o Whether it is in the old FK4 system or the new FKb5 system.
o The equinox (short for ‘epoch of mean equator and equinox’).

e The epoch (time zero for working out the proper motion correction, and not to be confused
with the equinox).

e Proper motion (various formats are required).
o Parallax (arcsec).

¢ Radial velocity (km/s).

The commands for specifying the target reference frame and for entering target coordinates will
be so designed that most target stars will only have to be entered as a plain [a,d].

Depending on the details of TCS control console displays etc, defaulting conventions along the
following lines will be employed:

¢ The equinox (for example B1950) can be used to imply the system, with prefix B meaning
‘old system’ or ‘FK4°, and prefix J meaning ‘new system’ or FK5. If no prefix is specified,
the system can be reliably deduced from the value supplied, so that an equinox before
1984.0 has an implied B prefix, and 1984.0 or later implies J. The equinox and system
together will initially default to J2000 FK5.

e The epoch, which determines the amount of proper motion to allow for, will generally be
supplied as a year (e.g. 1976.44) but will also be accepted as year, month, day. If a year,
for formality’s sake a B or J prefix can be used as for the equinox, though this will have a
negligible effect on the result. The value will default to that of the equinox, which is almost
always the case in star catalogues. The epoch will not be allowed to default in the case of
FK4 coordinates where the proper motion has not been supplied and is presumed inertially
zero. (An object such as a QSO has a fictitious non-zero proper motion in the FK4 system,
which is not an inertial frame. This is not well known to observational astronomers and is
one of two celebrated sources of confusion, the other being the presence in pre- TAU 1976
mean places of the E-terms of aberration.)
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¢ Proper motions (which must be supplied as a pair) default to zero in the new system and
to inertially-zero in the old system.

e The parallax and radial velocity both default to zero.

Most celestial targets will be [a,é], with (inertially) zero proper motions, in either B1950
coordinates at some specified epoch, or J2000. For pointing calibration stars it will be important
to include proper motions and in some cases parallax and radial velocity.

3.3 Transformation of Mean Places
In this section we set out all the steps required to perform the following transformations:

o Target mean [a,d] (three sorts) to tracking mean [a, d] (two sorts).

e Tracking mean [a,¢] (two sorts) to apparent.
The three sorts of target mean [a, é] are:

e Old style (FK4) with known proper motion in the FK4 system, and with parallax and
radial velocity either known or assumed zero.

e Old style (FK4) with inertially zero proper motion, and with parallax and radial velocity
assumed zero.

e New style (FK5) with proper motion, parallax and radial velocity either known or assumed
ZeTo.

The two sorts of tracking mean [a, ¢] are:

e Old style (FK4).
o New style (FK5).

(The procedures to be described attempt to reduce program size and to improve modularity
by performing all conversions via one standard reference frame, namely J2000 FK5. Though in
many cases it would be possible to devise a specialized routine for each combination of target
reference frame and tracking frame, or even to transform optimally all the way to [ Az, Fl], the
software will be easier to maintain and enhance if an indirect, modular approach is taken.)

We can thus construct any of the required transformations out of a total of seven building blocks,
most of which need only be executed once when acquisition of the target is requested. They are
as follows.

Required once only, when a new target is requested, one of:
a) FK4 with proper motion to J2000 FK5 current epoch
b) FK4 with no proper motion to J2000 FK5 current epoch
c¢) FK5 to J2000 FK5 current epoch



TCS/PTW/3.12 (TN_PS_G0044) 9

followed by one of:

d) 12000 FK5 to FK4
e) J2000 FK5 to FK5

Required continuously during tracking, after adding the offsets from base, one of:

f) FK4 to J2000 FK5
g) FK5 to J2000 FK5

As an example, consider the case where the target has been specified in 1900 coordinates, proper
motions have been given, and the telescope is being controlled in 1950 coordinates. The required
procedures would be (a) then (d) before acquiring the target, and (f) continuously thereafter.

The steps comprising each building block are given in the following sections. Each step requires
one Starlink SLALIB call (name in parentheses) or equivalent code. A summary diagram is
given later, including the mean to apparent stage.

a) FK4 with proper motion to J2000 (once only)

Space motion to the current epoch. (PM)
Remove E-terms of aberration. (SUBET)
Precess to B1950. (PRECES)

Add E-terms. (ADDET)

Transform to J2000, no proper motion. (FK457)
Parallax. (See MAPQK)

A o e

b) FK4 without proper motion to J2000 (once only)

1. Remove E-terms. (SUBET)

2. Precess to B1950. (PRECES)

3. Add E-terms. (ADDET)

4. Transform to J2000, no proper motion. (FK457)

c) FK5 to J2000 (once only)

1. Space motion to the current epoch. (PM)
2. Precess to J2000. (PRECES)
3. Parallax. (See MAPQK)

d) J2000 to FK4 (once only)

1. Transform to B1950, no proper motion. (FK547)
2. Remove E-terms. (SUBET)

3. Precess to final equinox. (PRECES)

4. Add E-terms. (ADDET)
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e) J2000 to FK5 (once only)

1. Precess to final equinox. (PRECES)

f) FK4 to J2000 (tracking)

1. Remove E-terms. (SUBET)

2. Precess to B1950. (PRECES)

3. Add E-terms. (ADDET)

4. Transform to J2000, no proper motion. (FK457)

g) FK5 to J2000 (tracking)

1. Precess to J2000. (PRECES)

These pathways are presented diagrammatically in Figure 2.

There will obviously be scope for optimization and approximation in the above procedures, if
this proves necessary. An optimization would be to omit redundant steps whenever the target
is specified in B1950 or J2000 coordinates, or when the telescope is being controlled in J2000
coordinates. Another would be to avoid multiple conversions between spherical and Cartesian
coordinates by staying in z,y,z. A simplification would be to omit the pairs of steps which
first subtract and then add back the E-terms, which though rigorously correct will have only an
inconsequential effect on the result for the range of equinoxes that will be used. However, in the
first instance the transformations will be implemented exactly as given, unless other practical
issues emerge.

3.4 Mean to Apparent

Transformation from J2000. FKb5. current epoch, to apparent place, required either continuously
during tracking (where the telescope is being controlled in mean place, the normal case) or just
once when a new target is requested (in the rare case where the target has been specified as a
mean place and the telescope is being controlled in apparent place) involves the following effects:

o Light deflection — the gravitational-lens effect of the sun.
e Annual aberration.

e Precession/nutation.

Though the light deflection is significant at the limb of the Sun (174) it falls off rapidly and has
shrunk to about 0702 at an elongation of 20° from the Sun, which is presumably closer than will
ever be used on Gemini (unless a total Solar eclipse is in progress). The effect is thus negligible
for our purpose and could be omitted. However, unless CPU time is at a premium, it will be
best to perform the correction for the usual reasons of (a) rigour and (b) to assist comparison
with other software.



TCS/PTW/3.12 (TN_PS_.G0044) 11

The annual aberration is a function of the Earth’s velocity relative to the solar system barycentre
(available through the Starlink SLALIB routine EVP) and produces shifts of up to about 20%5.

The precession/nutation, from J2000 to the current epoch, is expressed by a rotation matrix
which is available through the Starlink SLALIB routine PRENUT.

The whole transformation could be done using the Starlink SLALIB routine MAP, with the
proper motions, radial velocity, and parallax all set to zero, and the equinox to 2000. This is,
however, a wasteful approach as both the Earth velocity and the precession/nutation matrix
can be calculated relatively infrequently without ill effect. A more efficient method will be
to precompute the target-independent parameters with the MAPPA routine and then to use

MAPQKZ.

4 TIME AND POLAR MOTION

The current time expressed in the following three systems is required for telescope pointing and
other observatory purposes:

e UTC (coordinated universal time) is needed for general logging.

e ST (local apparent sidereal time) is needed for the Earth rotation part of the telescope
pointing flow (and observers will expect to see it displayed on a VDU somewhere even
though all they will use it for is to do mental calculations about source rise/set times,
something that will be available through the TCS control console).

e TDB (barycentric dynamical time) is needed for various dynamical calculations (e.g. plan-
etary predictions) and will be available to data acquisition applications for timing variable
sources. (TDB is one of family of timescales, along with terrestrial time TT and the ob-
solete ephemeris time ET, which for most Gemini purposes are the same thing but which
differ from UTC by of order 1 minute at present.)

These timescales are, in principle, quite unconnected, and one cannot rigorously be converted
into another without additional information. ST is a function not of UTC but of UT1, and the
difference AUT = UT1—UTC has to be obtained from data published by the International Earth
Rotation Service (details below). UTC contains “leap seconds”, and cannot be used directly in
astronomical formulae. If the current offset from the continuous timescale TATI (International
Atomic Time) is known, this in practice allows TDB to be computed, although TDB and TAI
are not formally linked. In fact TATI is a more satisfactory choice than UTC for the fundamental
time service of an observatory, because of the need to continue operations through a leap second,
and we will assume this starting-point. Summarizing, the following are needed:

1. TAL

2. AAT = TAI-UTC. This is an integer number of seconds, changing by 1 on each occasion
that a leap second occurs.

3. AUT = UT1 — UTC. This is a fraction of a second, changing rather unpredictably by a
few milliseconds a day.
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Figure 2: Transformations for mean [a, 6]
The forms marked = are those available for target data entry (target coordinates), a choice of
four; the forms marked — are available for telescope control (tracking coordinates). Pick one
of each and follow the flow downwards. The sequences down to the chosen tracking coordinates
need to be executed only once per new target (in practice), but all the transformations from
that level down have to be performed at the full pointing rate.
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4. The geographical position of the Earth’s axis of rotation.

5. The telescope mean longitude and latitude.

Item 1 is provided by the observatory time service. Items 2—4 are published in International
Earth Rotation Service (IERS) Bulletin A. See http://maia.usno.navy.mil on WorldWideWeb
for further details. Item 5 comes from conventional surveying.

The correction of the telescope’s longitude and latitude for polar motion is barely significant
(rarely above 0”3, though it does move around on timescales of a few months) and need be made
only at the start of the observing session (if at all). The computations will require the polar
x. 9y, the telescope mean longitude, and the telescope mean geodetic latitude. The simple first
order expressions in section 3.27-3 in Fzplanatory Supplement to the Astronomical Almanac,
P.K. Seidelmann (ed), 1992, (hereafter referred to as the ‘ES’) are adequate.

The accuracy requirement for the geographical position of the telescope isn’t particularly high.
so that the figures provided by the surveyors will be more than adequate. If an error of a few
arcseconds did occur, it would be automatically corrected as part of the azimuth axis misalign-
ment measured through pointing tests. A gross error would produce an apparent asymmetry
in the atmospheric refraction, and even this would tend to be absorbed into other parts of the
pointing model. The reason that it is nonetheless worth considering correcting for polar motion,
despite the small size of the effect, is that this will help when models determined years apart
are being compared; an unknown but fixed error in the telescope position would not affect such
comparisons.

There is a subtle point here to do with azimuth, namely where ‘north’ is. If the conventional
view is taken that polar motion causes variations in the telescope’s latitude and longitude only,
the resulting predictions of telescope azimuth will naturally refer to the celestial ephemeris pole,
rather than the terrestrial pole, the two being in relative motion as we have seen. However,
because the telescopes are fixed to the ground, their azimuth zero-point correction — relative
to celestial north — would then be subject to change due to polar motion. This effect, of the
same sort of size as the polar motion itself, can be allowed for in the pointing calculations,
and this is the approach we will take. It should be borne in mind, however, that the azimuth
polar-motion correction may not have much practical significance given the ad hoc adjustments
to azimuth zero-point that traditionally occur as part of nightly calibrations using stars. But if
it turns out that the Gemini azimuth “zero-sets” are ultra-stable, then allowing for the effects of
polar motion in this way will be beneficial; under these circumstances, it will be best to exclude
azimuth zero-point from the nightly calibration procedures, leaving left-right collimation error to
mop up any observed sideways bias caused, for example, by thermal distortions in the telescope
structure.

The AUT tables given in IERS Bulletin A will need to be interpolated to give a revised value for
each day. A simple linear interpolation will be good enough for pointing the Gemini telescopes.
Should the supply of new tables be interrupted for any reason, extrapolation may be necessary.
Depending upon how long into the future the predictions have to be made, linear extrapolation
may not be good enough; more sophisticated and accurate extrapolations exist which take into
account known seasonal effects.

As new Internet-based information services are introduced, the automatic retrieval of AUT once
a day may become feasible.
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TDB can be determined as follows:

1. To the TAI add 32%184 giving TT.

2. Using the Starlink SLALIB routine RCC, add the small corrections for gravitational red-
shift and transverse Doppler effect (peak to peak 020033, clearly of no significance for
telescope pointing but probably worth doing partly for rigour but mainly as a service to
data acquisition applications involving timing of pulsars).

There are several forms of sidereal time; we will use the name ST to mean the local apparent
sidereal time computed using a telescope longitude which has been corrected for polar motion.
The steps required for computing ST are as follows:

1. Compute UTC by subtracting AAT from TAI
2. Compute UT1 by adding AUT to the UTC.

3. Compute the Greenwich mean sidereal time GMST from ES equation 2.24-1. This is
implemented in the Starlink SLALIB routine GMST (also GMSTA).

4. Add the equation of the equinoxes, giving the Greenwich apparent sidereal time GAST.
The equation of the equinoxes can be obtained by means of the Starlink SLALIB function
EQEQX, or preferably computed along with the nutation matrix via the routines NUTC
and NUTM. The time argument for either EQEQX or NUTC is TDB, which will be
available and should be used even though for this purpose UTC is commonly used directly
without appreciable loss of accuracy.

5. Subtract the telescope west longitude to give ST, the local apparent sidereal time.

It will not be necessary to go through the whole of the above calculation continuously as part of
the telescope tracking. For example, the sidereal time may be implemented within the telescope
control computer as a linear extrapolation working from a value computed for a nearby reference
epoch. The sample ST and the corresponding reference epoch can be refreshed every few minutes.

Leap seconds, which happen around 0 hours UT on January 1 or July 1, are announced several
months in advance in time bulletins. The following actions need to be taken:

1. When the announcement is first made, the TCS initialization file, or some other file that
is accessible to the TCS. must be updated to show the date at which the leap second will
occur. It can be assumed that the new AAT after that point will be one more than the
current value being used by the TCS.

2. After the leap second — the next day is soon enough, and the system will continue to
function satisfactorily for some days after that as long as AUT is left alone — these three
changes will need to be made, all at once:

e The date for the next leap second should be set to some arbitrary point in the distant
future.

e The current AAT must be incremented by 15.
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e The current AUT must also be incremented by 15. (The IERS tabulations will already
contain this discontinuity.) For example, if AUT was, say, —0853 before the leap
second, its value after the leap second will be 403147. (The purpose of leap seconds
is, of course, to keep AUT within about +1% so that UTC can be used directly
for astronavigation, getting up in the morning, and other relatively low precision
positional-astronomy applications.)

5 POINTING TERMS

5.1 Vector Methods

All the telescope pointing calculations will be specified using Cartesian (= rectangular = direc-
tion cosines = z,y, z) unit vectors rather than old-fashioned spherical trigonometry methods.
The now widely-used vector methods give greater protection against pole problems, more rarely
require departures from rigour, maintain more uniform accuracy over the celestial sphere, and
allow more succinct expression.

The coordinate convention we will use is as follows. Spherical coordinates A,B are such that B
is +m/2 at the poles, and A is positive anticlockwise as seen from the positive B pole. [a.d]
conform to this convention, and longitude/latitude if longitude is measured east, but not [h, ¢]
or [ Az, El]. To avoid left-handed systems, we shall be using [—h, 6 ] internally, and Az measured
from south through east. The corresponding Cartesian coordinates have the z-axis through the
point A = 0,B = 0, the z-axis at B = +7/2, and the y-axis at A = +7/2,B = 0. All
external interfaces will use the normal conventions, with azimuth, for example, running from
north through east.

The procedures for conversion between spherical and Cartesian coordinates can easily be deduced
from the above and are well known (for example see the Starlink SLALIB routines DCSC and
DCCS).

Rotations of the reference frame are produced by multiplying the z,y, z column vector by a 3 x 3
orthogonal matrix (a tensor of Rank 2, or dyadic), where the three rows are the vectors in the
old coordinate system of the three new axes.

Shifts of the direction of a vector need careful handling if the vector is to remain of length unity,
an advisable precaution so the z,y,z components are always available to mean the cosines of
the angles between the vector and the axis concerned. The telescope pointing calculations will
have two types of shifts to deal with, one where a small vector of arbitrary direction is added
to the unit vector, and one where there is a displacement in elevation alone.

For a shift produced by adding a small z. y, z vector D to a unit vector V1, the resulting vector
V2 has direction < V1 + D > but is no longer of unit length. A better approximation is
available if the result is multiplied by a scaling factor of (1 — D - V1), where the dot means
scalar product. In Fortran:

F = (1DO-(DX*V1X+DY*V1Y+DZ*V1Z))

V2X = F*(V1X+DX)
V2Y = F*(V1Y+DY)
V2Z = F*(V1Z+DZ)
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The correction for diurnal aberration is an example of this type of shift.

When a small change in elevation § £/ is made to a direction vector (for example in the case of
refraction), the direction of the result can be obtained by making the allowable approximation
tand F ~ 6 K and adding an adjustment vector of length é £ normal to the direction vector in
the vertical plane containing the direction vector. The z-component of the adjustment vector
is 6 F cos F, and the horizontal component is § F'sin £ which has then to be resolved into z and
y in proportion to their current sizes. To approximate a unit vector more closely, a correction
factor of cosdF can then be applied, which is nearly (1 — ¢ £?2/2) for small § E. Expressed in
Fortran, for initial vector V1X,V1Y,V1Z, change in elevation DEL (4+ve = upwards), and result
vector V2X,V2Y,V2Z:

COSDEL = 1D0-DEL*DEL/2DO
R1 = SQRT(V1X*V1X+V1Y*V1Y)
F = COSDEL*(R1-DEL*V1Z)/R1

V2X = F*ViX
V2Y = F*V1Y
V2Z = COSDEL*(V1Z+DEL#*R1)

Note that the division by R1 gives a zenith problem. This is unlikely to be a serious difficulty as
long as the effect concerned is zero at the zenith (which is true of refraction but not collimation)
and of a functional form that allows the equations to be simplified. The refraction algorithm is
well behaved in this respect; there is an overall cot £Z which allows the R1 to be cancelled to give
csc I/, and hence no problems until the horizon, which the Gemini telescopes cannot reach.

5.2 Earth Rotation

This is the first of two major rotations of the reference frame, the part of the pointing flow which
converts Right Ascension to minus Hour Angle. (As already explained, it is more convenient
to use minus HA than to have a lefthanded coordinate system.) It requires the local apparent
sidereal time, the derivation of which was covered earlier. The transformation can be expressed
as the following orthogonal matrix:

+C +5 0
-5 +C 0
0 0 1

The symbol C represents the cosine of the local apparent sidereal time (24" = 27 radians),
and the symbol S is the sine. The multiplications can be written down explicitly as follows (in
Fortran):

X2 = +CxX1+5x*Y1
Y2 = -S*xX1+CxY1
22 = 71
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X1,Y1,Z1is the [a, 6] vector and X2,Y2,Z2 the apparent [—h, ] vector.

5.3 Diurnal Aberration

This is the component of aberration due to the motion of the observatory around the Earth’s
axis, and causes a shift in the apparent direction of the target which will be up to about 0'3
(for targets on the meridian, at Mauna Kea), the ratio between the rotational speed of the
observatory as the Earth spins and the speed of light. Starting from Cartesian coordinates
X1,Y1,Z1 in the local [—h, ¢ ] system, and an aberration constant DIURAB (slightly different for
the two Gemini sites), allowance for diurnal aberration can be made as follows (in Fortran):

F = (1DO-DIURAB*Y1)

X2 = FxX1
Y2 = F*(Y1+DIURAB)
72 = F*Z1

X1,Y1,Z1 is the apparent [—h, ¢ ] vector and X2,Y2,Z2 the topocentric [—h, § ] vector.

DIURAB is simply the speed of rotation (sidereal) of the observatory, in units of c. It is propor-
tional to the distance of the observatory from the Earth’s spin axis, which can be obtained by
means of the Starlink SLALIB routine GEOC. If this distance is in AU, the multiplier is:

27/(0.99726956634 x 173.14463331)

5.4 —HA/Dec to Az/El

This is the second of the two major rotations of the reference frame, from equator based coor-
dinates to horizon based coordinates. The rotation is about the y-axis in the [—h, 6] system, so
that the z-axis moves from the north celestial pole to the local zenith at the telescope, followed
by a small rotation about the z-axis to correct for polar motion. The main rotation is through
90° minus the astronomical latitude, corrected for polar motion. The second rotation, always
very small, is equal to the required azimuth change. (The polar motion correction is described
in the section on timescales, earlier.) The difference between the astronomical latitude (which is
related to the direction of the local gravity vector and is strictly needed for this transformation
because the refraction and tube flexure effects are centred on the astronomical zenith) and the
geodetic latitude (which is geometrical) can probably be neglected. The transformation can be
expressed as the following orthogonal matrix:

+cosesing sine — cosecos o
—sinesin¢g cose +sine€coso
+ cos ¢ 0 +sin ¢

The symbol ¢ represents the telescope true geodetic latitude, and the symbol € is the correction to
azimuth due to polar motion: both can be computed by the Starlink SLALIB routine POLMO.
Making the entirely acceptable approximations sin € ~ ¢ and cose ~ 1, given that e will never
exceed a fraction of an arcsecond, we can write down the multiplications explicitly as follows (in
Fortran):
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X2 = +SP*X1+ExY1-CP*Z1
Y2 = -ExSP*X1+Y1+ExCP*Z1
22 = +CP*X1+5P*Z1

SP and CP are sin ¢ and cos ¢ respectively; E is €. X1,Y1,Z1 is the topocentric [—h, § ] vector and
X2,Y2,Z2 the topocentric [ Az, El ] vector.

Note that the south-through-east azimuth convention used here is different from the north-
through-east scheme that is generally used and has been adopted for Gemini. This is to avoid
introducing a left-handed coordinate system and hence sign changes in the procedures which
convert between spherical and Cartesian coordinates. Transformation to the convention used
on the Gemini telescopes (simply a sign reversal in x) will take place as the final step in the
pointing flow.

5.5 Refraction

The effect of atmospheric refraction is to increase the observed elevation of an astronomical
object by an amount which is usually modelled as:

Cuac ~ Cobs + Atan Cobs + B tang Cobs

where (4. is the topocentric zenith distance (i.e. in vacuo), (s is the observed zenith distance
(i.e. affected by refraction), and A and B are parameters which depend on local meteorological
conditions and the effective colour of the source/detector combination.

For typical observing conditions at the Mauna Kea Gemini telescope (4253 metres above sea
level), A will be approximately +36” and B approximately —0'04. The corresponding values at
Cerro Pachén (2737 metres) are +44" and —0705 respectively.

The constant A depends most strongly on the refractive index n of the air near the telescope (A
is approximately n — 1 radians) which can readily be computed as a function of temperature,
pressure, humidity and wavelength (from formulae in Astrophysical Quantities by C.W.Allen,
and elsewhere). However A also depends to some extent, and B to a large extent, on the
large scale structure of the atmosphere above the telescope — the temperature and water vapor
distribution with height in particular — and accurate prediction of A and B is not especially
easy or fast, requiring numerical integration through a model atmosphere. The Starlink SLALIB
routine REFCO computes A and B by calling, for two sample zenith distances, a routine REFRO
which implements the algorithm given in section 3.281 of the ES. The required input parameters

for REFCO are as follows:

temperature, pressure and relative humidity

temperature lapse rate in the troposphere

latitude and height

effective wavelength
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Summarizing so far, the refraction calculations will be driven by the two constants, A and B.
which can be computed at start-up and every few minutes thereafter, by the Starlink SLALIB
routine REFCO. The strategy for supplying the TCS with meteorological parameters has yet to
be determined. Depending on the reliability of the measuring instruments, continuous updating
from the enclosure control system may run the risk of introducing glitches in the tracking. It may
be better to refresh the values only on request from the operator, or perhaps during telescope
slews.

The next problem is that the above refraction formula predicts the in vacuo zenith distance given
the refracted zenith distance, and we want to go the other way. The naive approach of simply
interchanging (,4. and (,5s and reversing the sign, though approximately correct, gives avoidable
errors which are of borderline significance; for example at the minimum Gemini elevation of 15°
the error is about 0'15 (at the Cerro Pachén site). It is, however, possible to write out one
iteration of the Newton-Raphson method to give an essentially perfect result (well under 07001
even in the worst case) at little extra computational cost:

Atan (yee + Btan® (uae
1+ (A4 3Btan? (yu.)sec? (pac

Cobs =~ Cuac -

When the vector formulae for refraction are set down, considerable simplification is possible,
a by-product of which is the elimination of any problem at the zenith. The following Fortran
procedure takes an in vacuo [ Az, El ] vector X1,Y1,Z1 and calculates the refracted position
X2,Y2,Z2, the new coordinate system being observed [ Az, Fl]. The refraction constants A and
B are assumed to be known:

ZSQ = Z1xZ1

RSQ X1xX14Y1%xY1

R = SQRT(RSQ)

WB = B*RSQ/ZSQ

WT = (A+WB)/(1DO+(A+3DO*WB)/ZSQ)
D = WT*R/Z

CD = 1DO-D*D/2D0

F = CD*(1DO-WT)

X2 = X1%F
Y2 = Y1xF
Z2 = CD*(Z1+4D*R)

D is the change in elevation. The operational implementation may involve extra code to protect
against divide by zero at the horizon: even though the real telescope itself cannot reach low
elevations, commanding the virtual telescope to acquire such a target may involve executing the
above code, leading finally to a ‘star has yet to rise’ status. A more elaborate version of the
above algorithm is implemented in the Starlink SLALIB routine REFV.

In general, more than one set of refraction constants A and B will be needed, because of possible
colour differences between science target and guide-stars and between the science detector and

the wavefront sensors. Multiple sets of refraction constants are most efficiently generated by
calling the Starlink SLALIB routine ATMDSP.
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5.6 Tilt of the Azimuth Axis

The surveying techniques used to set up the azimuth bearing of each Gemini telescope will mean
that the azimuth axis will be parallel to the astronomical vertical (the direction of gravity) to
within a few arcseconds. If it intersects the celestial sphere AN radians north and AW radians
west of the astronomical zenith, the tilt (simply a small rotation of the reference frame) can be
allowed for by multiplying by the following orthogonal matrix:

+cos AN 0 +sin AN
—sin AN sin AW 4 cos AW 4+ cos AN sin AW
—sin AN cos AW —sin AW 4+ cos AN cos AW

Using SN.CN,SW.CW to signify sin AN, cos AN, sin AW, cos AW, this can be coded in Fortran as
follows:

X2 = CN*X1+SN*Z1
Y2 = -SN*SW+X1+CWxY1+CN*SW*Z1
22 = -SN*CWxX1-SWxY1+CN*CW*xZ1

The X1,Y1,Z1 vector is in observed [ Az, El ], and the X2,Y2,Z2 vector is in pre-collimation
mount [ Az, El]. The tilt is likely to vary due to azimuth journal irregularities, so AN and AW
may be functions (implemented perhaps as harmonics or lookup tables) of the corrected encoder
azimuth.

If necessary the approximations sin AN =~ AN, cos AN = 1, sin AW =~ AW, cos AW ~ 1 may
be used, assuming AN and AW are small.

(It may be useful at this point to note that the algorithm for an equatorial mounting would
require a large rotation, from [ Az, El ] to pre-collimation mount [—h,]. The above matrix is
rigorous and could be used for an equatorial. However, the AN value, instead of being small,
would be close to ¢ — /2, where ¢ is the latitude.)

5.7 Collimation Errors

Geometric difficulties at the zenith make it convenient to treat three different distinct pointing
effects as a package:

e nonperpendicularity of azimuth and elevation axes
e position of instrument rotator

e position of nominated pointing-origin

5.7.1 Az/El Nonperpendicularity

The [ Az, El | nonperpendicularity NPAFE is a small angle, positive when the beam moves in-
creasingly towards the left as the telescope moves up from the horizon, as you look at the
sky.

NPAFE will be small, probably less than 5", but may need dynamic corrections according to
empirically determined models, due to journal irregularities for example.
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5.7.2 Instrument Rotator Position

The position of the instrument rotator is described by two small angles, the horizontal collimation
CA and the vertical collimation CF.

The horizontal collimation is the departure from perpendicularity of the incoming beam to the
elevation axis, for a star focussed on the rotator axis. The sign convention we will use is that as
the telescope moves up from the horizontal, CA is positive if the beam describes a small circle
to the left of the nominal vertical as you look at the sky.

The vertical collimation is the elevation of the same beam when the mechanical elevation is zero,
so the sign convention is such that a positive CFE means that the beam is actually at a positive
elevation when the corrected elevation encoder reading suggests that the telescope is horizontal.

The vertical collimation CF is logically distinct from the elevation encoder index error IF but
it is almost impossible to separate the two from pointing tests. Incorrectly interpreting an ele-
vation encoder index error as vertical collimation error would cause the prediction of projection
geometry to be wrong; it will be best to assume that, following optical alignment, the CF value
is zero for the rotator axis and to use IF to correct the pointing. Furthermore, although not
essential, it will be best to arrange, through mechanical adjustment, that the corrected [ Az, El]
encoder readings are reasonably close to the mechanical reality, so that IF is small.

CA for the rotator axis might be a few tens of arcseconds in size. Predictable and perhaps large
corrections to CA and CF will be required for the shifts produced by an atmospheric dispersion
compensator, if used.

5.7.3 Pointing-Origin

The position of the pointing-origin relative to the rotator axis is defined by the rotator position-
angle RPA and the pointing-origin z,y on the rotator XIM,YIM.

By ‘pointing-origin’ we mean the nominated point in the focal plane to which the pointing refers.
The terms ‘instrument aperture’, ‘beam’. ‘pointing axis’ and ‘optical axis’ are sometimes used
to mean the same thing. See the section on calibrating the pointing-origin positions, later.

The sign convention for RPA, X IM and Y IM is as follows (see Memorandum to Gemini Project
Managers from Earl Pearson dated 5th January 1994):

RPA is zero when, for elevations well away from the zenith, the projection on the sky of the
rotator’s y-axis points downwards (ignoring for the present any small corrections due to NPAFE).
R PA then increases from zero through 4+90° as the projection on the sky of the y-axis rotates
anticlockwise.

Y IM is positive when for zero R PA and elevations well away from the zenith the projection on
the sky of the pointing-origin is below the projection of the rotator axis.

The positive direction of XIM is such that the XIM and YIM axes have the conventional
[x,y ] orientation as seen looking down into the A & G from M2: therefore projected on the sky
the X TM axis is, contrary to the usual convention, 90° anticlockwise of the Y IM axis, so that
for zero R PA and elevations well away from the zenith X I'M is positive when the projection on
the sky of the pointing-origin is to the right of the projection of the rotator axis.
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RPA (the actual rotator position-angle, not the demanded one) will be stored internally in
radians but talked about in degrees.

XIM and YIM will be in units of length (metres is probably the formally correct unit, but
millimetres is more convenient) so that the same instrument used at different f-numbers will
have the same offsets. However, the scale of the pointing compensation will depend on the focal
length FL of the telescope, and it will be more important to use consistent values for the focal
length than to know the focal length precisely. It will be convenient if XIM and YIM are
available internally in (loosely) radians:

XR
YR

XIM/FL
YIM/FL

For pointing origins lying well off-axis (for example a WFS at the edge of the field), some
adjustment to XR and YR will be essential in order to correct for the optical projection geometry,
relative to the assumed tangent plane or gnomonic projection. The form of the adjustment will
be simplest if the centre of the projection geometry (and hence the point of best image quality)
is on the rotator axis.

5.7.4 The Combined Collimation Correction

All of the collimation effects just described can be combined using essentially plane geometry
— at the edge of a half degree field the departure from gnomonic geometry, for example, is
considerably less than 0”1 — to yield a net pointing-origin position. In Fortran, the algorithm is
as follows, with X1,Y1,Z1 the pre-collimation mount [ Az, El ], and where XI and ETA are the
altazimuth counterparts of the ‘standard coordinates’ [ £, ] of spherical astronomy:

* Correct the position-angle for Az/El nonperpendicularity
RXY2 = X1*X1+Y1%Y1
RXY = SQRT(RXY2)
PA = RPA+NPAE*RXY
SPA = SIN(PA)
CPA = COS(PA)

* Pointing-origin position (on sky XI +ve left, ETA +ve up)
ETA = XR*SPA-YR*CPA+CE
XI = -XR#CPA-YR#SPA+CA+NPAE#(Z1-ETA*RXY+TF*RXY2)

The expression ‘Z1-ETA*RXY+TF*RXY2’. used in allowing for the non-perpendicularity, is a pre-
liminary estimate of the mount elevation. For small values of NPAE, the approximate corrections
for vertical collimation and for ‘tube flexure’ (the ‘~ETA*RXY+TF*RXY2’ terms) can safely be omit-
ted, and the simple expression ‘NPAE*Z1’ used instead. The principal justification for these tiny
corrections is to improve consistency between the ‘downstream’ (where to point the telescope?)

and ‘upstream’ (where is the telescope pointed?) transformations.?

2 A compromise between rigour and efficiency is to retain the ‘~-ETA*RXY’ term in the downstream transformation
but to move the ‘TF*RXY2’ term, which is always tiny, out of the downstream algorithm into the upstream
algorithm, with the requisite change of sign. The errors introduced by this adjustment are of no practical
significance, and the agreement between the downstream and upstream calculations is preserved. This approach
is used in the Gemini operational code.
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This overall pointing-origin position XI,ETA can now be used to derive a rigorous transformation
predicting the required mount [ Az, El ] to align the pointing-origin with the target. The pre-
collimation mount coordinates X1,Y1,Z1 can be regarded as the ‘star’ and the post-collimation
mount coordinates X2,Y2,Z2 the ‘telescope’:

* Predict mount vector (provisionally assuming no tube flexure)
XI2 = XI*XI
ETA2P1 = ETA*ETA+1DO
SDF = Z1xSQRT(XI2+ETA2P1)
R2 = RXY2+ETA2P1-Z1%Z1*XI2

R = SQRT(R2)

C = (SDF*ETA+R)/(ETA2P1%RXY*SQRT (R2+XI2))
X2 = Cx(X1*R+Y1%XI)

Y2 = Cx(Y1*R-X1*XI)

Z2 = (SDF-ETA*R)/ETA2P1

In the operational code, tests will need to be inserted for two cases which cause the above
routine to deliver incorrect results. In rough terms, these cases are where the zenith distance
of the target is less than (i) the distance between the rotator axis and the pointing-origin, or
(ii) the net horizontal collimation. Case (i) would have to be handled properly if the telescope
tube were to be allowed to tip past the zenith (unwise if hysteresis is to be kept to a minimum).
In case (ii) the target is impossible to reach.

Note that if the rotator is tracking the changes required to match the azimuth adjustment
will introduce second order effects in the collimation corrections. The operational code could
employ an extra iteration here, but a simpler approach is simply to use the most-recent achieved
rotator angle, extrapolated according the current velocity. Such difficulties occur only near the
zenith (within say 10 arcminutes), where there are other problems, including the possibility of
oscillation as rotator angle and telescope azimuth chase each other in order to maintain pointing.
The operational code may need to employ brutal techniques to keep out of the region altogether.

As already mentioned, for any given value of net horizontal collimation, any position on the
sky less than that distance from the zenith cannot be reached, irrespective of azimuth speed
performance, and the above algorithm will give arbitrary results in azimuth. If, however, the
offset of the nominated pointing-origin from the rotator axis exceeds the C'A value itself, rotations
of the instrument-mount will always be able to achieve a net zero horizontal collimation, and if
appropriate movements in azimuth are also available the zenith could be observed. This could
conceivably have a practical use: a detector placed near the edge of the —0°75 field might be
able to track a region of sky right through the zenith if the full 2°/s azimuth slewing speed
is available. That this is possible can easily be seen by considering a widefield photographic
exposure of a field whose declination is such that the zenith will pass by at the edge of the plate
during tracking. Should a CCD exposure of a field on the edge of such a plate be needed instead,
the CCD could be positioned where that part of the plate would have been.

5.8 Tube Flexure

The calculations so far have ignored the effects of gravity on what is traditionally called the
‘telescope tube’ but which in the case of the Gemini design is the complex ensemble of the
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optical support structure (OSS), the instrument rotator, the acquisition and guiding unit and its
components, together with the active optics system. Starting with the entire telescope unaffected
by gravity, the next step is to imagine the gravity being ‘turned on’, potentially causing the OSS
to deflect vertically and lose alignment with the target; what mount adjustment will be required
to restore the alignment?

A plausible starting point for the tube flexure model is to assume that the entire OSS assembly
obeys Hooke’s law, so that the pointing shift is vertical and proportional to the component of
gravity normal to the tube axis. This leads to a model:

C ~ Ctel + TF sin Ctel

where ( is the ‘observed’ zenith distance for the nominal tube axis, TF is the amount of flexure
with the tube horizontal, and (;.; is the zenith distance of the yoke, within which the tube is
presumed to be drooping under its own weight.

The real law may be rather different. On the AAT the departure is so pronounced that a tan(
model works better than sin ¢ (this is not due to any shortcomings in the refraction correction!).
Such a model was used for a time but was eventually replaced with a (possibly more mechanically
realistic) combination of the basic sin ¢ law together with an empirical tan? ¢ term. The empirical
term, which is important at large zenith distances, was determined from the combined data of
many pointing tests.

Like the refraction model, the above equation is the wrong way round for our purposes: we
want to compute (;; from (. However, the size of the effect is likely to be extremely small for
the Gemini design, because the active optics system will eliminate all the gross deformations in
the OSS, just a few arcseconds at the most. and its empirical nature make it unnecessary to do
other than an approximate inversion. Thus the provisional model is:

Cre1 = ( —TFsin

The minus sign has been chosen to be consistent with past practice (e.g. at the AAT). Without
active optics and with flexure alone affecting pointing, a downward droop of the top end would
produce a positive value for the coefficient TF in the above formulation.

In principle, any vertical correction should be rotated into the mount frame by taking into
account the tilt of the azimuth axis. However, where the azimuth tilt produces a large rotation
— at the zenith — the vector is small, and unless both the flexure and the tilt turn out to be
enormous, the rotation will produce a negligible effect and may be ignored. (This convenient
approximation obviously cannot be made in the case of an equatorial mounting.)

Correction for tube flexure can be applied by means of the following Fortran algorithm. The
vector X1,Y1,Z1 is this time the post-collimation [ Az, El ], and the result, X2,Y2,Z2, is the
mount [ Az, El].

F = 1DO-TFx*Z1

X2 = X1%F
Y2 = Y1xF
Z2 = (Z1+TF)*F



TCS/PTW/3.12 (TN_PS_G0044) 25

If the functional form of the tube flexure is not of the assumed form the required code may of
course be very different.

Despite the advantages of working in Cartesian coordinates, the final phase of the collimation
correction, and the whole of the tube flexure correction, may be better done in terms of spherical
coordinates. Such an approach will be essential if the decision is ever made that the telescope
tube be allowed to pass through the zenith during service.

5.9 Encoding Errors

Little can be said in advance about the character or likely size of the corrections which will have
to be applied to the encoder readings before they can be used by the MCS/servo system to close
the position loop.

For each of the two sets of encoders there will, of course, be a zero point, and we will use
the names [A and [F (azimuth and elevation index errors). As mentioned in the section on
collimation errors, there will be two elevation zero point errors in the system (CF and IF)
which cannot be separated by pointing tests. Thus there must be arrangements for resetting the
encoders to a standard relationship with the machinery (possibly so that IF can be assumed zero
and never has to be determined even after encoder replacement or other major disturbance).
Although the azimuth index error will, in contrast, be available from the analysis of pointing
tests it would also be tidy to arrange that the mechanical setting-up of that encoder system is
also such that the index error /A is small and the encoder is consistent with the gross telescope.
Note also that stability of the IF and ITA values could be crucial if large and rapidly changing
encoder errors are discovered.

The main gear errors will probably be accurately described by harmonics of one revolution of
the axis and of each of the pinions or rollers involved, each harmonic requiring a cosine and a
sine term. Further smooth irregularities may be treated simply as higher harmonics; harsher
techniques — empirical functions, lookup tables, etc. — may be needed to cope with localized
blemishes and with encoder errors. Pointing tests can be expected to determine well the low-
frequency terms, but pinion errors and localized effects may need tracking tests instead, either
specially-devised or by means of the analysis of logged WFS data. Though possibly hard to
measure, such errors ought to be very stable.

We plan to introduce small random variations when setting the telescope to standard park
positions. This will avoid localized wear as a result of movement during oilpad pressure changes
etc.)

6 INSTRUMENT-MOUNT POSITION-ANGLE

Commands and other controls will be provided to allow data acquisition procedures and the
observer to specify the orientation of the instrument-mount. The following functions will be
supported:

o In the tracking reference frame, set the rotator y-axis to a given angle relative to the merid-
ian which passes through the pointing origin. ‘Meridian’ means northwards for equatorial
coordinates, up for [ Az, Fl].
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o In the observed [ Az, Fl | frame (irrespective of the tracking frame), set the rotator y-axis
to a given angle relative to the vertical which passes upwards through the pointing origin.

Either of the set functions should be available via direct pushbutton control of the rotator (so
there will be a ‘let me set the rotator by pressing buttons and then track the vertical’ function
for example).

Standard formulae giving the parallactic angle for the current [h.d] of the target allow a good
first order estimate of the required position-angle (see the Starlink SLALIB routines PA and
ALTAZ for example). However, the Gemini accuracy goals mean that refraction and at least
some of the telescope pointing corrections must be taken into account.

Refraction has a substantial and variable effect on the geometry of the field as the latter is tracked
across the sky, producing a vertical compression of the picture, the amount and orientation in
equatorial coordinates of which vary as the track proceeds. This distortion cannot of course be
removed by controlling the rotator angle, but its effect in terms of star trails will be reduced
to an acceptable level if on the rotator the north-south line (in the tracking reference frame) as
affected by refraction is kept to a constant orientation.

For an equatorial mount, the telescope pointing effects produce, to first order, a fixed offset
in field orientation that is relatively innocuous. This advantage is not enjoyed by altazimuth
mounts, where the size of the pointing corrections, and their orientation relative to equatorial
coordinates, change during tracking. The largest effects on the position-angle of the telescope
field will be at the zenith, where the collimation corrections may swing the azimuth many degrees
from the nominal value, and the position-angle with it.

From the form of the refraction and telescope pointing corrections it would be possible to devise
analytic expressions which would allow compensation of the rotator position-angle demands.
However, because the telescope tracking calculations are being carried out as a series of coordi-
nate transformations in z, y, z, a corrected position-angle can be determined from the net z,y, 2
transformation without resorting to too much trigonometry. The steps are as follows®:

1. Generate the ‘up vector’, a unit vector normal to the target vector in the tracking coordi-
nate system and in the direction of the positive pole.

2. Transform it through the telescope pointing flow, up to but not including the collimation
terms, to express it in the pre-collimation mount [ Az, Fl | frame.

3. Express the direction of the y-axis of the rotator for mechanical position-angle zero as a
unit vector in the pre-collimation mount [ Az, El] frame. Call this the rotator zero vector.

4. Determine the angle between the transformed up vector and the rotator zero vector.
5. Add corrections for collimation.

6. Combine with the desired orientation of the y-axis relative to the up vector to give the
required instrument rotator position-angle.

3The approach described here was used in early versions of the Gemini TCS. A different, more versatile,
algorithm was subsequently adopted, based on “osculating transformation matrices” (yet to be described). Details
of this alternative algorithm are given later.
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The algorithm in Fortran, starting from the target vector X,Y,Z, is as follows:

* Generate the up vector
RU = SQRT(MAX(X*X+Y*Y,1D-10))

SB = Z/RU
XU = -X%*SB
YU = -Y%*SB
ZU = RU

This up vector? and the target vector are now processed through the appropriate part of the
pointing flow giving transformed up and target vectors XUT,YUT,ZUT and XT,YT,ZT. Then:

* Generate the rotator zero vector
RT = SQRT(MAX(XT*XT+YT*YT,1D-10)

SBT = ZT/RT
XR = -XT*SBT
YR = -YT*SBT
ZR = RT

* Angle between the up vector and the rotator zero vector
SQ = XT*YR*ZUT+YT*ZR*XUT+ZT*XR*YUT
: -ZT*YR#XUT-YT*XR*ZUT-XT*ZR*YUT
CQ = XR*XUT+YR*YUT+ZR*ZUT
IF (SQ.EQ.ODOD.AND.CQ.EQ.ODO) €Q=1DO
Q = ATAN2(SQ,CQ)

SQ and CQ, which stand for sin Q and cos Q, are respectively the scalar triple product of the T, R
and UT vectors and the scalar product of the R and UT vectors. The sign of Q has been chosen
so that for the full pointing transformation Q is, to first order, equal to the parallactic angle.

(An impure but perhaps easier to understand version of the above algorithm, avoiding use of
the ‘up vector’, would be to repeat the pointing calculations for an imaginary target a few
arcseconds north of the true target and to use the resulting changes in [ Az, Fl ] to determine
the orientation of the north-south line.)

Allowance must now be made for the effects on the orientation of the rotator caused by (i) the
mount movement arising from collimation corrections and (ii) the az/el non-perpendicularity.
Using the nomenclature of the earlier section on collimation, the corrected position-angle is
approximately:

QC = Q-Z2*ATAN2(-XI,SQRT(RXY2-XI2))+NPAE*RXY

*Mathematically, it turns out that the value of ZU is almost immaterial.
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For a desired orientation on the sky of the y-axis of the rotator, PA (reckoned north through
east), the demand rotator angle is PA minus QC.

Many of the quantities required in the above algorithm are also needed for the pointing algorithm
itself, and so it is most convenient if the two sets of calculations are carried out together.

Both the pole case and the zenith case require special treatment to avoid arithmetic problems, a
manifestation of the fact that here the position-angle change is indeterminate. There are other
practical considerations in both these cases:

e Very near the zenith, for large collimation values, there may be difficulties, because the
telescope pointing transformation depends on the actual rotator position-angle, which, if
the rotator is tracking, will depend on the telescope pointing transformation. However,
the system ought to be stable except for a small area near the zenith well within the region
where rapid azimuth motion makes observing impossible anyway.

e The celestial pole also poses some problems as in this case it is not meaningful to talk
of ‘north’. The solution when observing the pole with a 2D detector (for example when
taking a CCD picture) is to specify a pointing-origin some distance off-centre and to make
the target position a point on the sky about that distance from the pole and with a chosen
to determine the orientation of the field on the detector.

7 PRACTICAL DETAILS

7.1 Pointing Adjustments

The horizontal collimation C'A and elevation index error IF are of special importance as they cope
with a wide range of physical effects which might otherwise pose an overwhelming calibration
problem. Examples include unwanted tip/tilts in M1 and M2, and thermal distortions of the
telescope tube.

For this reason, these two numbers, CA and IF. should be the ones adjusted when the telescope
pointing is checked on a few stars at the start of observing.

Functions will be provided to set and calibrate CA and IF:

1. One function will simply report the current values and allow new ones to be entered.

2. Another will allow the telescope operator (or an automatic procedure involving a WFS) to
signal that the telescope has been adjusted to point at the target whose coordinates were
supplied. Appropriate changes can then be made to CA and IF so that the current and
supplied target coordinates match.

3. A third function will manage a calibration run involving one or more stars. During the
run, records will be kept of the stars used so far, and the mean and RMS for the corrections
applied to CA and IF will be logged as an indication of pointing stability. As more stars
are observed, it will become possible to adjust other parts of the telescope pointing model
which are known to vary from day to day. The instrument rotator will have to be kept
stationary (i.e. with respect to the OSS) during the procedure, unless the pointing-origin
x,y relative to the rotator axis is accurately known.
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7.2 Calibrating the Pointing-Origin Positions

The online measurement and adjustment of the position X IM.Y I M of each pointing-origin will
be a key part of the calibration process and crucial if the pointing RMS delivered by pointing
analyses is to be available to telescope users. The correct procedures must be followed even
though various ‘quick and dirty’ techniques might initially appear to be easier (setting the C'A
and IF values to correct the pointing locally for example).

Provision for several pointing-origins will be made. Three will be enough for most purposes (two
instrument apertures plus a nominal origin for acquisition and field verification) but more will
be needed in cases such as M2 chopping with a multi-aperture instrument. Manual operation
through the TCS console might allow the user to name a separate command for each required
origin, something like:

A = "AXTIS -1.341 -0.020" ! define beam A
B = "AXIS +0.993 -0.017" ! define beam B
A ! select beam A
etc

Selection of pointing-origin via pushbutton may also be useful. Control from the OCS may
involve either selection of preset pointing-origins or simply assertion of new X IM,Y M values.

The pointing-origin calibration procedure will poll a set of keys or pushbuttons (for example a
hand paddle: up/down/left/right plus speed control are required) and will directly increment
and decrement X IM and YIM. The operator will first position a star on a known and accurately
calibrated origin (probably a TV reference point), then will select the new origin (by pressing
the ‘aperture A’ button, say) and then use the buttons to ‘guide’ the star onto the instrument
aperture. The tracking [a,d] remains fixed while the real telescope moves as a result of the
changing collimation corrections; once the star is on the instrument aperture the calibration is
complete. Once set up, the system will track a star with full accuracy anywhere in the focal
plane, even if the rotator position-angle is changed.

Calibration with respect to the rotator axis will be performed by determining the XIM.YIM
of any given origin twice with a 180° rotation in between. An adjustment of half the difference
between the two sets of XIM,YIM is then made to all the pointing-origins, which are then
referred to the rotator axis.

Pressing the buttons while the standard ‘reference origin’ (used for target acquisition) is selected
will have the effect of changing the telescope demand [a,é] while making equal and opposite
changes in XIM .Y IM for all the other pointing-origins. This is to allow any tracking errors to
be eliminated during the calibration run.

Facilities will be required for automatically centring on the source. The procedure will involve
sampling the detector output while performing a cross-scan. FEach arm of the scan will be
self-convolved to determine the point of best symmetry (this will work even if the signal is
negative-going), and the pointing-origin X IM .Y IM will then be adjusted so that the telescope
moves to align the beam to the source.
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7.3 Economical Implementation

There have been proposals to carry out the full pointing calculation at or near servo rates;
the Gemini IOCs are very fast compared with the telescope control computers of a few years
ago, and the resulting ‘brute force’ software will be as compact and obvious as it is possible to
achieve. However, there are counter-arguments: computing power is still not in infinite supply.
the pointing software may actually be easier to follow if a lot of the complicated ‘background’
calculations are kept out of the main flow, and thrift now leaves open the option later to increase
the loop speed from the planned 20 Hz if this turns out to be desirable.

A simple scheme was described earlier for computing the sidereal time. essentially by counting
20 Hz “ticks”. In the case of the pointing transformations, we intend to use a scheme which
combines rigour and precision with economical use of CPU time by representing the bulk of
the telescope pointing transformation as slowly changing ‘osculating transformation matrices’
(OTMs) which can be recalculated relatively infrequently and used as interpolation devices by
the fast loop. An OTM can represent the net effect of several arbitrarily complicated and
rigorous pointing models as long as the transformations are locally smooth (which is in any case
a requirement if the pointing is ever to be accurate and stable). The pointing calculations can
then be done in three groups as follows:

1. At low frequency; about once every 60° is more than enough:

e TDB-TT

o check incremental software sidereal clock

e Earth barycentric position and velocity

e precession/nutation matrix, aberration vector, etc.
e refraction parameters

o thermal effects?

2. At medium frequency; limited by how far the telescope can offset between iterations, and
hence how far out the pointing predictions will be — about once every 5% is satisfactory:
o Generate 1st OTM: mean [a, d] to apparent [a, ]
e Generate 2nd OTM: apparent [—h, 8] to pre-collimation [ Az, El ]

e amount of tube flexure if complicated function

3. At high frequency; say 20 Hz, to allow differential movements to exploit the full bandwidth
likely to be available:
e tracking coordinates to apparent [a, ] (using 1st OTM)
e to apparent [—h,d]
to pre-collimation [ Az, Kl | (using 2nd OTM)

e collimation

to mount [ Az, El]

e analogous computations to get rotator angle
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e increment sidereal time

Two osculating transformation matrices are needed because the Earth rotation is (clearly) not a
slowly changing effect. Similarly, the second OTM cannot include the collimation adjustments
because the collimation model can change abruptly (when switching a star image from one
instrument aperture to another for example, which is done by changing the pointing-origin =,y
parameters). Figure 3 shows the relationship between the two OTMs and the ‘pointing flow’.

There will be analogous but hopefully much simpler transformations to perform in order to
generate corrected encoder readings. It seems likely that the corrections will change sufficiently
slowly for them to be computed at a much lower frequency than reading the encoders and issuing
the corrected reading to the servo software. The computations can take place in either the TCS
or the MCS. Use of matrices will not be required in this case as each system has only to deal
with one coordinate.

An osculating transformation matrix is easily determined once the procedure for transforming a
target vector through the relevant part of the pointing flow is available. The steps are as follows:

1. Generate three ‘probe vectors’ surrounding the target vector at a distance over which the
distortions in the coordinate system do not depart seriously from linear scaling and shear-
ing. The precise positions are unimportant but for good sampling of the transformation
field should be reasonably evenly spread. and not so close that the numerical precision
is significantly eroded. We propose using an equilateral triangle about 025 a side, and a
procedure for generating such a pattern is given later.

2. Transform the probe vectors, one by one, through the part of the pointing flow which is
to be modelled.

3. Use the resulting three z-values to solve for three coefficients which enable each z-value
to be expressed as a linear combination of the original z, y, z of that vector. Do the same
for y and z.

4. The nine coefficients can be laid out as a 3 x 3 matrix by which any of the original probe
vectors can be multiplied to yield the corresponding transformed probe vector.

If the pointing transformation were a pure rotation, the osculating transformation matrix would
be orthogonal (except for rounding errors) and would correctly transform not just the probe
vectors but any other vector anywhere in the sky. Where the transformation also includes an
element of distortion (due to refraction for instance), the matrix will be nearly but not quite
orthogonal, will analytically transform only the three probe vectors, but for a smoothly changing
transformation will give a close approximation for any position in the neighborhood.

Expressed symbolically, for three probe vectors Py, P, P35, the pointing transformation will yield

a further three vectors 1. @2, ¢)3. For an osculating transformation matrix a, b, c. .. . as follows:
x a b ¢ x
y = |d e f y
i Q1-3 g hoi i Pis

the matrix elements a,b,c.... can be determined from the following three sets of simultaneous

equations:
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Figure 3: The TCS Pointing Flow Using OTMs
The diagram is adapted from the top (TCS) part of Figure 1, but with each of two groups of
transformations summarized into a 3 X 3 matrix, called an ‘osculating transformation matrix’ or

OTM. In cases where the telescope is being controlled in terms of apparent [a, é ] or topocentric
[Az, El]. there is no OTM #1, and if control is in mount [ Az, £l ] neither OTM is required.
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T9, = zTpa + yplb + zpc
rg, = zpa + ypb + 2pc p —ab,c
TQ, = zIpa + ypgb + zpc
¥y, = zpd + ype + zpf
Yo, = zpd + ype + zpf p—d.e f
¥, = zpd + ype + zpf
zQ, = zTpg + yplh + ZPlz.
29, = Tpg + yph + zp — g, h,1
2Q; = Tpg + yPgh + ZPSZ.

Note that the equations can be solved by inverting just one matrix and then multiplying by the
three transformed probe vectors in turn. The matrix will be rather ill-conditioned: the cofactors
and the determinant will all be the result of subtracting nearly equal quantities, because the three
rows will be very similar. (It would be singular if any two of the probe vectors were coincident —
obviously.) However, the degree of ill conditioning is such that with double-precision arithmetic
the result will be of more than adequate accuracy. Algorithms for solving such sets of linear
equations are widely available; the Starlink SLALIB library has a simple matrix inversion routine
DMAT which is suitable. Alternatively, a standard 3 x 3 matrix inversion algorithm can readily

be hard-coded.

The Fortran algorithm which follows generates three probe vectors [X1,Y1,Z1], [X2,Y2,Z2] and
[X3,Y3,Z3] starting from a target vector [X,Y,Z] and a radial distance DEL. A DEL value of
0.005radians (about 1000") gives good results, as will a wide range of other values. The pattern
is a fairly accurate equilateral triangle centred on the target., but this is similarly uncritical.
We will, however, keep the vectors at unit length as a precaution against incompatibility with
the pointing calculations. The method of doing this used below is approximate, but entirely
adequate. At the expense of more CPU time each component of a probe vector could simply be
divided by the modulus SQRT(X#X+Y*Y+Z*Z) of that vector.

Generate probe vectors

*  *

¥ Useful functions
R = SQRT(X*X+Y*Y)
IF (R.GE.1D-10) THEN

SA = Y/R
CA = X/R
ELSE
SA = 0DO
CA = 1DO
END IF
SASB = SAx*Z

CASB = CAx*Z
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* X,Y,Z shifts for generating the three probe vectors

DUP
DDN
DRL

DXUP
DYUP
DZUP

DXDN
DYDN
DZDN

DXRL
DYRL

DEL
DEL*0.5D0
DEL*0.8660D0

= -DUP*CASB
= -DUP*SASB
= +DUP*R

= -DDN*CASB
= -DDN*SASB
= +DDN*R

= -DRL*SA
= +DRL*CA

¥ Normalization factor

F =

1

DO-DEL*DEL/2D0

* First probe vector: above the target
X1 = F*(X+DXUP)

Y1
Z1

F* (Y+DYUP)
F*(Z+DZUP)

* Second probe vector: down and to the right

X2
Y2
Z2

Fx(X-DXDN-DXRL)
Fx(Y-DYDN-DYRL)
Fx(Z-DZDN)

* Third probe vector: down and to the left

X3 =
Y3
Z3

F* (X-DXDN+DXRL)
F*(Y-DYDN+DYRL)
F*(Z-DZDN)

The inverse of each OTM will also be required, for performing the ‘upstream’ pointing flow.

The upstream flow, which starts with mount [ Az, El ] and calculates from it the corresponding
celestial position, is the subject of the next section.

7.4 Upstream Transformations

The principal concern of the present document is open-loop control of the telescope, and so we

have concentrated on a ‘pointing flow’ which begins with a star’s catalogue position and predicts

what encoder readings are required in order to point at the star. It is, however, also possible to

formulate a pointing flow which works in the opposite direction, and the TCS will need to do this

for some purposes. We call the star-to-mount, or “Where should I point the telescope?” case
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the downstream transformation, and the mount-to-star, or “Where is the telescope pointed?”
case the upstream transformation.

An obvious example requiring an upstream transformation is where the telescope is on its way
to a new target and we would like to monitor its actual position en route. However, much
more critical applications of upstream transformations arise in the management of autoguiding,
for example when determining the [a,d8] of a guide-star (in the usual case, where only an
approximate position is available a priori.)

When the telescope is a long way from the target (the point on the sky for which accurate
pointing calculations are being made) the upstream transformation will use simple, classical
transformations, and ignore pointing corrections. Once the telescope is within a few degrees
of the target, and approaches the region which is being sampled to provide the OTMs, more
elaborate calculations (see below) can take over.

On some occasions an upstream pointing flow will be required only for a segment of the full.
downstream pointing flow. However, we give here all the steps, starting with corrected encoder
readings from the MCS and determining the corresponding mean [a,d] in the tracking coordi-
nate system. (It should be noted that the variable-names used here are not necessarily the same
as the ones used for the downstream code fragments.)

The first step is to transform mount [ Az, Fl ] from spherical coordinates AZ and EL to Cartesian
coordinates XF, YF, ZF:

* Azimuth (N=0,E=90) and elevation to x,y,z
COSEL = COS(EL)

XF = -COS(AZ)*COSEL
YF = SIN(AZ)*COSEL
ZF = SIN(EL)

Then the effects of ‘tube flexure’” are removed. For consistency with the downstream alogorithm,
this involves one Newton-Raphson iteration (written out). The tube flexure coefficient is TF,
and the resulting [z, y, z] coordinates are XC, YC, ZC:

* Remove tube flexure
Z = (ZF-TF)*(1DO+TF*ZF)
ZC = (ZF-TF*(1DO+Z*Z))/(1DO-2DO*TF*Z-TF*TF)
F = 1DO-TF*ZC
XC = XF/F
YC = YF/F

The ‘collimation’ terms XI and ETA are then established; these are the so-called ‘standard co-
ordinates’ £ and 7. Variables XIM and YIM are the [z,y | of the nominated pointing-origin; CA
and CE are the horizontal and vertical collimation terms. Note that because the nonperpen-
dicularity effect (coefficient NPAE) depends on the mechanical rather than the pre-collimation
elevation, it is simpler in form here than in the more awkward downstream case. Note also that
allowance should be made at this stage for any optical distortion, relative to the ideal gnomonic
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projection.’ The variable FL is the telescope focal length; SPA and CPA are the sine and cosine
of the actual rotator position-angle.

* Pointing axis position wrt rotator axis
XR = XIM/FL
YR = YIM/FL

* Pointing axis position wrt ideal axis
XI = -XR*#CPA-YR*SPA+CA+NPAEx*ZF
ETA = XR*SPA-YR*CPA+CE

The collimation effects can then be allowed for by means of the following rigorous transformation;
the resulting [z, y, z] coordinates are XM, YM, ZM:

* Remove combined collimation
F = SQRT(1DO+XI*XI+ETA*ETA)
R = SQRT(XC*XC+YC*YC)

XM = (XC-(XI*YC+ETA*XC*ZC)/R)/F
YM = (YC+(XI*XC-ETA*YC*ZC)/R)/F
ZM = (ZC+ETA*R)/F

The second OTM’s inverse 0TMHEI is now used to transform the telescope position into local
equatorial coordinates XH, YH, ZH:

* To -HA/Dec system

XH = OTMHEI(1,1)+*XM+0TMHEI(1,2)*YM+0TMHEI (1,3)*ZM
YH = OTMHEI(2,1)*XM+0TMHEI(2,2)*YM+0TMHEI (2,3)*ZM
ZH = OTMHEI(3,1)*XM+0TMHEI(3,2)*YM+0TMHEI (3,3)*ZM

The coordinates are then referred to the true equinox by allowing for Earth rotation, to give
[2,y.2] coordinates XA, YA, ZA; SST and CCT are the sine and cosine of the local apparent sidereal
time:

* To geocentric apparent RA/Dec system

XA = CST*XH-SST*YH
YA = SST*XH+CST*YH
ZA = 7ZH

The complexities of the transformation into, say, B1975 FK4 coordinates are encapsulated in
the first OTM’s inverse 0TMUAI, which is applied to yield [z, y, z] coordinates XU, YU and ZU:

®For the pure Ritchey-Chrétien optical design used by Gemini, and the relatively small field, the departure
from tangent plane geometry is small enough to ignore.
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* To current tracking mean RA/Dec system

XU = OTMUAI(1,1)*XA+0TMUAI(1,2)*YA+0TMUATI(1,3)*ZA
YU = OTMUAI(2,1)*XA+0TMUAI(2,2)*YA+0TMUAI(2,3)*ZA
ZU = O0TMUAI(3,1)*XA+0TMUAI(3,2)*YA+0TMUAI(3,3)*ZA

Finally we transform from [z,y, z] to [a,d]:

* To RA/Dec
RA = ATAN2(YU,XU)
DEC = ATAN2(ZU,SQRT (XU*XU+YU*YU) )

For pointing coefficients within the ranges expected for the Gemini telescopes, consistency be-
tween the downstream and upstream algorithms presented in this paper is usually better than
10~ arcseconds, even for pointing-origins lying well off-axis.

7.5 Instrument-Mount Position-Angle using OTMs

The algorithm presented in Section 6 expresses the orientation between (i) the [z, y | coordinate
system of the focal-plane and (ii) the celestial coordinate system in which the telescope is being
controlled. A more general problem is to determine the focal-plane orientation with respect to
an arbitrary celestial coordinate system which is in general different from the one in which the
target is being tracked. The most obvious case is where a given instrument orientation with
respect to [ Az, El ] is required; merely stopping the rotator is, after all, only an approximation
to this condition (and only works for an altazimuth mount). A more subtle example is where
the telescope is being controlled in (say) J2000 [a, ¢] and it is important (for some reason) to
have a 2D detector aligned accurately to the B1950 grid.

One way to implement the general scheme is to use OTMs which apply to the nominated rotator-
tracking frame, separate from the ones which apply to the target-tracking frame. Upstream
transformations can then be used to determine the orientation in the rotator-tracking frame
of the focal-plane’s n-axis, and hence the rotator orientation that aligns the n-axis (at the
pointing-origin) with the “meridian” (the north-south or up-down line) in the rotator frame.
The following code demonstrates this technique. Prerequisites are:

e the pre-collimation mount coordinates, XM, YM, ZM;

e the two OTMs (as in the upstream-transformation code, these are called OTMHEI and
O0TMUAI, though they may not contain the same numbers);

e S and C, the sine and cosine of the angle of rotation required between the application of
the two OTMS, normally the sidereal time;

e the pointing-origin coordinates, XI,ETA; and

e the pre-tube-flexure mount coordinates, XC,YC,ZC.
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* Undo 2nd transformation (giving -HA/Dec in the usual case)

XHI = OTMHEI(1,1)*XM+0TMHEI(1,2)*YM+0TMHEI (1,3)*ZM
YHI = OTMHEI(2,1)*XM+0TMHEI(2,2)*YM+0TMHEI (2,3)*ZM
ZHI = OTMHEI(3,1)*XM+0TMHEI(3,2)*YM+0TMHETI (3,3)*ZM

* Undo rotation (giving apparent RA/Dec in the usual case)

XAT = C*XHI-SxYHI
YAT = S*XHI+CxYHI
ZAT = ZHI

* Undo 1st transformation (giving rotator tracking coordinates)

X0 = OTMUAI(1,1)*XAT+0TMUAI(1,2)*YAT+0TMUAI(1,3)*ZAT
YO = OTMUAI(2,1)*XAT+0TMUAI(2,2)*YAT+0TMUAI(2,3)*ZAT
Z0 = OTMUAI(3,1)*XAI+0TMUAI(3,2)*YAI+0TMUATI(3,3)*ZAT

This is the projection on the sky of the pointing-origin
at XI,ETA, in the rotator-tracking frame.

* Add an arbitrary eta increment to the pointing axis position
ETA = ETA+1DO

* Remove combined collimation
R = MAX(SQRT(XC*XC+YCxYC),1D-10)
XMI = XC-(XI*YC+ETA*XC*ZC)/R
YMI = YC+(XI*XC-ETA*YC*ZC)/R
ZMI = ZC+ETA*R

* Undo 2nd transformation (giving -HA/Dec in the usual case)
XHI = OTMHEI(1,1)*XMI+0TMHEI(1,2)*YMI+0TMHEI(1,3)*ZMI
YHI = OTMHEI(2,1)*XMI+0TMHEI(2,2)*YMI+0TMHEI(2,3)*ZMI
ZHI = OTMHEI(3,1)*XMI+0TMHEI(3,2)*YMI+0TMHEI(3,3)*ZMI

* Undo rotation (giving apparent RA/Dec in the usual case)

XAI = C*XHI-S*xYHI
YAT = S*XHI+CxYHI
ZAT = ZHI

* Undo 1st transformation (giving rotator-tracking coordinates)
X = OTMUAI(1,1)*XAT+
OTMUAI(1,2)*YAI+
OTMUAI(1,3)*ZAI
Y = OTMUAI(2,1)*XAI+
O0TMUAI(2,2)*YAI+
O0TMUAI(2,3)*ZAI
Z = OTMUAI(3,1)*XAI+
OTMUAI(3,2)*YAI+
O0TMUAI(3,3)*ZAI

38
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* Position angle of +eta on the rotator tracking frame
SQ = -Y*X0+Xx*YO
CQ = Z*x(X0*xX0+Y0*YO0)-Z0O* (X*X0+Y*YO)
IF (SQ.EQ.ODO.AND.CQ.EQ.ODO) CQ=1DO
QC = ATAN2(SQ,CQ)

Notes:

1. The algorithm presented earlier involved a “correction to position-angle due to collimation
error”. The present algorithm does not.

2. In the presence of refraction, any instrument-mount orientation is a compromise, and
stars somewhere in the field will inevitably produce “trailed” images in a long exposure.
Compared with the earlier algorithm, the values returned by the code above are slightly
different but amount to an equally good compromise.

7.6 Summary of Pointing Data Requirements

The computation of the demand azimuth, elevation, velocities, and position-angle requires three
sorts of information: external, measured, and user-specified.

The external data are as follows:

o TAI

o telescope longitude, latitude, and height
e polar motion z, y

e TAI-UTC

e UT1-UTC

o TT—TAI (= 325184)

The measured data include the following; there will be additional pointing coefficients, which
cannot readily be identified until pointing tests are done.

e temperature, pressure, humidity

e AN: azimuth axis tilt, north

e AW: azimuth axis tilt, west

e NPAF: Az/El nonperpendicularity
e (CA: horizontal collimation

o CE: vertical collimation
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o focal length

e rotator position-angle, actual
e pointing-origin z,y (several)
e TF': tube flexure

o Gear error parameters

e Encoder error parameters

e [A: azimuth index error

e [F: elevation index error

The list of essential ‘user’ inputs is as follows; there will also be offsets from base and non-sidereal
track rates etc.

e target coordinate system (system and in some cases equinox)
e tracking coordinate system (likewise)

e target coordinates (perhaps including proper motions etc)

e pointing-origin selection

e required orientation of rotator y-axis



