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This is the final report on the Gemini Observatory
Control System System Design Review held
September 6, 1995, in Edinburgh Scotland.

1.0 Introduction

The OCS Preliminary Design Review was held September 6, 1995 at ROE in Edinburgh
Scotland. This report collects together the documenation from the review, including:

• The report of the review committee

• The responses of the OCS design team to comments and concerns raised as part of
the review

• Updated copies of all documents that were reviewed during this process.

Not included are copies of the supplemental documentation that was available during
the review.
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This report summarizes the results of the Observatory
Control System Preliminary Design Review held
September 6, 1995, in Edinburgh Scotland.

1.0 Introduction

The OCS Preliminary Design Review was held September 6, 1995 are ROE in Edin-
burgh Scotland. This report describes the results of the review and all action items that
are a result of the review. A companion report,[16], gives detailed comments that were
raised as part of the review and the responses of the OCS development team.

2.0 References

[1] ocs._sw.007-pdrProducts, OCS Preliminary Design Review Product Overview, Gemini Observa-
tory Control System Group, 1995.

[2] ocs.kkg.014, Observatory Control System Software Requirements Document, 6/5/95, Gemini
Observatory Control System Group, 1995.

[3] ocs._sw.004, Observing Tool Track Preliminary Design

[4] ocs._sw.006, Preliminary Design for Configurable Control System Concurrency

[5] ocs.kkg.031, Preliminary Sequence Command Design

[6] ocs.kkg.032, OCS Interactive Infrastructure Track PDR

[7] ocs.kkg.033, Telescope Control Console Track Preliminary Design

[8] ocs.kkg.034, User/Observing Console Track Preliminary Design

[9] ocs.kkg.035, Observatory Control System Development Plan

[10] ocs.kkg.036, Preliminary Design for Access Control in the OCS

[11] ocs.kkg.037, User Activity Models in OCS

[12] ocs.kkg.038, Planned Observing Support Track Preliminary Design (VERIFY)

[13] ocs.ocs.001, Observatory Control System PDR Data Dictionary
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[14] ocs.ocs.002, OCS Physical Model Description

[15] ocs.ocs.003, Scheduling Track Preliminary Design

[16] ocs.ocs.007-pdrResponse, Response to the Comments on the OCS PDR Documents

3.0 Reviewers

The reviewers were split into several groups:

• ‘virtual’ reviewers who were asked to review the materials and provide comments
via email for discussion during the review, and

• ‘real’ reviewers who were asked to be present at ROE for the review meeting

We would like to thank all these people for their support and comments.

4.0 Overall review comments:

The review committee felt that the OCS was successful in meeting the requirements of
the PDR. In fact, the committee believes the OCS team has done an outstanding job in

TABLE 1. Reviewers present at OCS PDR review

Name Organization

Steve Beard ROE

Severin Gaudet DAO

Chris Mayer RGO

Jim Oschmann Gemini

Rick McGonegal Gemini

Malcolm Stewart ROE

Pat Wallace DRAL

Steve Wampler Gemini (chair)

TABLE 2. ‘Virtual’ reviewers

Name Organization

Peter Biereichel ESO VLT

Fred Gillett Gemini

Keith Shortridge AAO

Doug Simons Gemini

Susan Wieland Gemini
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preparing the OCS preliminary design. There has been an impressive amount of effort
put into the OCS design.

The committee believes that the project would be best served by replacing further OCS
reviews with the prototyping approach proposed by the OCS team in conjunction with
more frequent meetings between the Principal Systems developers.

The documentation was lacking a definitive overview. The committee asks the OCS to
develop a complete design overview, preferably including a graphic diagram, as the
work progresses. This overview should be separated from the detailed design.

5.0 Concerns

The biggest concerns of the committee centered on scheduling and infrastructure sup-
port.

5.1 Concern over schedule

The committee is concerned that the OCS is on an ambitious time line and that there is
too much to do in the time allocated with the number of personnel available.

5.2 Concern over infrastructure

There is still concern over the functionality provided by CAD/CAR records, but the
committee expects these concerns to be addressed during the next phase of the design as
the Interactive Observing Infrastructure track gets underway.

The committee urges the Gemini Project to make the next release of the CAD/CAR
record implementation available as soon as possible, and encourages the OCS develop-
ment team to remain flexible as other work packages get underway and impact the over-
all system design.

The committee further urges the OCS to concentrate on the IOI infrastructure and avoid
the temptation to devote too much time to the upper-levels of the design until the point
in the WBS where such attention is scheduled.

6.0 Review Comments and Responses

Because of the success of the review, the comments of the reviewers and the responses
of the OCS development team are listed in [16] and not repeated here. Readers should
refer to that document for details of the issues raised during the review.
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7.0 Action Item Status

A number of action items have resulted from the OCS PDR review. These action items
are listed in this section.

TABLE 3. OCS PDR Action Items

Item Description Who? Status?

1 The OCS team should illustrate how the infrastructure
works by developing a few observing screens and imple-
ment their functionality down through the IOC level.

OCS

2 An OOD (Object-Oriented Design) tool should be cho-
sen soon, and the choice should be discussed with Sev-
erin Gaudet (DHS).

OCS

3 The funtional requirements for the external database
need to be developed.

OCS and
DHS

4 The OCS needs to pick a message system service for
intraOCS communications.

OCS

5 The CAR state diagram should include a transition from
PAUSED to ERROR on error status input.

OCS

6 Resolve remaining CAD/CAR issues. All princi-
pal systems

done

7 Address issue of timeouts during long actions - specifi-
cally, how does the OCS detect that a system as ‘hung’
while busy and will never complete the action.

OCS

8 Describe choices for a scripting language to gemini-soft-
ware for discussion.

OCS

9 Resolve OBSERVE/ENDOBSERVE behavior and how
date flows from instruments to the DHS during these
actions.

All princi-
pal systems

in progress

10 Discuss how concurrent observations impact on the
DHS, which must handle data from several sources at
the same time.

OCS and
DHS

11 Fix epoch/equinox use in example screens in documen-
tation.

OCS

12 Examine session manager and OT interface for common
functionality to see if they can share common
approaches.

OCS

13 Discuss use of various devices for target acquisition and
how the principal systems are impacted by need to save
acquisition images.

GPO and
DHS

14 Add COB to list of instruments (commissioning device) OCS/CICS

15 Look at role of PV-Wave in the OCS and DHS OCS and
DHS

16 Look at data access control procedures. OCS and
DHS

17 Ask scientists about data access control requirements to
see what the expectations are.

GPO

18 Point out questionable requirements to GPO. OCS
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The Gemini OCS Preliminary Design Review was held on September 6, 1995 at the Royal Observatory,
Edinburgh. Comments were solicited and received electronically between August 16, and September 6,
1995. Participants at the review meeting included programmers Chris Mayer (RGO), Patrick Wallace
(RGO), Steven Beard (ROE), and Severin Gaudet (DAO), and project managers Rick McGonegall
(Gemini Project) and Malcolm Stewart (ROE). Reviewers who did attend the meeting include Keith
Shortridge (AAO) and project scientists Fred Gillett (Gemini Project) and Doug Simons (Gemini
Project). Others at each site also reviewed the documents and their input is also included in each partic-
ipants comments. In conjunction with the OCS PDR meeting, a series of Principal Systems meetings
were held on September 4, 5, and 8. There was much overlap in the topics covered.

The following paper examines the comments that were submitted electronically and gives a response or
an action to each, if necessary. Many of the topics were covered in detail in the meetings, and the deci-
sions made there are folded into the responses.

The corrections to the documents pointed out by reviewers are not mentioned here but those corrections
will be made to the documents. The comments of the reviewers are organized by reviewer and then by
document.

[1] Journal of Object-Oriented Programming, May 1995. James Rumbaugh, Modeling and Design col-
umn.



Chris and Patrick divided their comments between general remarks and comments on specific docu-
ments.

Having read the documentation we are concerned about the amount and complexity of the work given
the tight time constraints. The work package appears very ambitious. It looks as if the OCS developers
are being set an impossible task. Consideration should be given to lengthening the time scales and
increasing the allocation of manpower to this work package.

This concern was expressed by others as well. Previous reviews have examined the complex-
ity of the design and have found it to be a reasonable match to the complexity of the job of the OCS.

The Gemini Project Office is aware of the perception that the OCS complexity will be hard to manage. It
is our job to insure that we monitor the development and keep the project office informed of our
progress. Manpower issues will be addressed by the project office.

One aspect of the documentation that didn’t help here was the generation of “aliases” for terms that had
already been used. The most obvious example of this was the introduction of “action variable” for CAR
record.

The term “action variable” is more general than CAR record. A CAR record represents a
particular kind of action variable used in conjunction with actions that are initiated and monitored
through the EPICS CAD/CAR interface. However, OCSApps will have to be able to monitor actions in
other OCSApps as well, and this functionality will not be supported using CAR records. For this reason,
we adopted the more general term “action variable.” We regret that the distinction was not made clearer
in the documentation.

Turning to more specific topics, the aspects of the design that concern us most are (not in order of prior-
ity)

The intention to support concurrency within a session if the resources for the different observations
don’t conflict. If concurrency was only allowed for different sessions then this would simplify one part
of the software without removing the ability to execute observations concurrently.

This point was discussed at the review meeting. We agree that the design would be simplified
by disallowing concurrency within a session. However, it has been deemed essential that an observation
should be able to release one or more of the resources it holds before it has completed execution in the
system so that other observations can proceed. The most obvious example of the need for this is to sup-
port slewing the telescope to the next target while the detector for the previous observation is still read-
ing out.

The concentration of the design on handling conflicting requests from different operators i.e. the intro-
duction of the client_id data. Is this really necessary? It complicates the PS and the implementation of
the CAR records considerably in order to handle a situation that will very rarely occur. If users want to
issue conflicting commands from different OTs then it is up to them to keep track of what they are doing



First, we do not believe that adding cl_data is a considerable complication, though neither
of us are as familiar with EPICS as the TCS designers are at this point. A PS simply passes the cl_data
along when it updates the CAR record for the action. The CAR record does nothing with the client data
except reflect it in its STATUS output.

It was pointed out in the Principal Systems meeting that the EPICS dm tool will be awkward to use
when a cl_data field is required for each CAD record. Also, if the TCS to TCS subsystem interface is to
use the same CAD/CAR records, then cl_data will only complicate matters. However, we believe that the
Principal System interface should not be constrained by either the shortcomings of the dm tool, or by
the needs of internal system interfaces, which are not the intended use of CAD/CAR/SIR.

The cl_data field is needed in the OCS to associate a command with the actions is causes in a PS. It
makes it possible to unambiguously determine when an action completes. This capability is required in
the OCS but may not be required between other systems and their subsystems. Even if we decide that we
don’t care about simultaneous use of the same commands by different operators, the design of the OCS
is tremendously simplified if cl_data is introduced.

• The desire to layer a full message system on top of EPICS. If it is really required to know the origin of
every command then perhaps we should look at an architecture written to support this model rather
than trying to bend EPICS to fit.

It isn’t clear that the changes we propose constitute a “full message system.” At any rate,
your point is still valid. It seems that we are using EPICS as nothing more than a message passing sys-
tem at the PS interface level. On the other hand, we are confident that the CAD/CAR design will work
and if we remove EPICS then it has to be replaced with something else, and a new ICD design devel-
oped.

• The requirement to support spontaneous monitors i.e. to raise more than one monitor per processing
of a CAR record. This may be possible but we don’t believe it is currently supported by any other
records and questions of EPICS buffering and lock sets will have to be resolved. This requirement
would go away if we dropped the need for cl_data and used other records to show progress of an
action i.e. drop ALERT

ALERT was added to parallel the functionality of the DRAMA TRIGGER message. It isn’t
required in the OCS, but it does seem like a nice way of providing feedback, especially if there are no
SIR records associated with the action or if the SIR record values don’t change quickly. However, the
MODIFIED state (which must be implemented in the same manner as ALERT) is important. It allows an
OCSApp to determine when an action it initiated has been interrupted before completing.

The issue of buffering and lock sets needs to be examined, perhaps by Bret Goodrich when he
gets up to speed with EPICS. We will bring these issues up with the EPICS experts that will be reviewing
the CAD/CAR records.

• The mention of setting the CAR record to BUSY from within a subroutine attached to a CAD. This
has all sorts of implications for the lock sets that records are allowed to be placed in.

It was agreed in the Principal Systems meeting that this requirement is no longer needed, pro-
vided that cl_data is used, and that CAR record updates eventually occur in the correct order (the order
CADs are applied). The OCS will not rely on the PS setting a CAR record to BUSY before accepting a
command.

The unresolved question of what sequencing is done by the OCS and what is done by the PS. The design
appears to be evolving towards the approach of the PS receiving their commands in any order. In this
case commands need to be of the preset type. However, there doesn’t seem to be any command to tell a
PS when to apply all the presets ie. when a configuration is complete and should be executed.



Sequencing problems appear to have been solved in the Principal Systems meeting by adopting
Patrick Wallace’s approach of presetting one or more CAD records, then using an APPLY command to
actually initiate the actions. New command verbs must be invented to disambiguate the overloaded
meaning of the term APPLY.

Has the model of “here’s a configuration - fire it off and forget about it for 10 mins” been selected
because it’s what astronomers want or because it’s hard to do better? For example, is the system going to
be fast enough to do automatic peaking-up, or will such things just have to bypass the OCS, typically by
simply using engineering features operationally?

It is difficult to interpret the meaning of this statement. I don’t believe astronomers care how
we handle the PS interface. They’re only interested in what the system does, not how its implemented.
Also, we don’t recall discussing a “fire it off and forget about it” model. The approach we settled upon
at the meeting will satisfy our system requirements. For common actions like peaking-up, the OCS must
provide adequate support. If there is a frequent need to bypass the OCS then we have failed to do our
job.

The records for the SAD and ARD should be supplied by the PS in their own IOC’s. If the OCS needs
them in a separate IOC then copies should be created and the ones in the PS monitored. If this is not
done, standalone operation of the PS will be difficult.

Separate IOC copies should not be needed. The SAD and ARD are comprised of the distrib-
uted EPICS databases. The actual location of the various SIR and CAR records is immaterial, since
EPICS hides this detail. It was agreed at the meeting that IOC developers will structure their databases
so they can be moved from their IOCs to the SAD IOC if it is determined that is necessary by the opera-
tions staff.

At several places in the OCS documentation the intention is stated to use available packages or products
but that a package has not yet been identified. Is there any contingency in the work package to allow for
no suitable package being found so that extra work has to be done to extend what is available?

Using commercial and “netware” whenever necessary is a requirement of the OCS, and we
must take advantage of using the work of other programmers whenever possible. Luckily, we are confi-
dent that products can be found to satisfy many of the OCS needs (such as a message system, and data-
base). If these tools could not be found we will have to revisit the WBS, prioritize, and make any
required adjustments.

We have not printed the detailed work breakdown at this stage but the docs. indicate an awful lot of
work. Can it be done? In particular need to see if there is any slack in system and the three concurrent
tracks have more work than the duration! With only 3 staff (?) this can’t be done. Need more details of
staff etc. to resolve this.

See “Complexity of the Design” on page 2.

Does this mean a tool will not be used nor the Ward/Mellor methodology? Also implies that other struc-
tured design tools may only be of limited use. What is Gemini viewpoint on this? or is this the Gemini
viewpoint? We hope that the search for object-oriented tools doesn’t hold up implementation, and that if
the OCS group find any other people will be able to comprehend the output.



An object-oriented design methodology was chosen for the internal design of the OCS for
the reasons indicated in section 1.1. The search for appropriate tools is underway and we have identi-
fied at least one such tool that would be adequate. The search will not hold up implementation beyond
the few days that it takes to evaluate a couple of trial copies (we are building upon a previous investiga-
tion of CASE tools by NOAO’s Richard Wolf). If we continue the implementation without tool support
however, we believe that the design would suffer since changes would be difficult to document and
would tend to be reflected only in the implementation.

As for comprehending the output, we are confident in our own abilities to master the OO design method-
ologies. Others may in fact have to familiarize themselves with our chosen methodology before attempt-
ing to comprehend the design. Object-oriented software design should not be treated any differently
than any other discipline. One would not expect to immediately grasp an electrical engineer’s design
with no prior introduction to his field’s notation.

What happens if no tool comes along, does this mean OCS will not produce data flow diagrams, state
diagrams etc.

See above.

What does “opaquely” mean in point 3

Point 3 is getting at the idea that once steps 1 and 2 are complete, we no longer have to
focus on the details of each OCS application. Instead, we focus on interactions between applications to
structure the OCS.

Consoles - does this imply many OCS clients connecting to a PS? or is the PSA the only client that con-
nects in a CA sense?

In the PDR design, only the PSA for a PS actually issues commands. However, consoles and
other clients monitor the ARD and SAD using Channel Access.

What would be impact of 1) having to write it all from scratch 2) extending a package if it doesn’t do
everything that is required?

 i.e. is there any contingency if a package can’t be found?

See above.

What do dashed lines indicate on an object diagram (they don’t appear on fig 1-1)

Unfortunately Figure 1-1 is incomplete. It is difficult to reduce an entire book’s worth of
methodology to one figure illustrating the major notation. Perhaps it is deceptive to even attempt to
introduce the methodology? The dashed lines are used whenever an association between two classes
exists but cannot be shown directly. The SystemSubjectCommunications subsystem is not expanded to
show which classes it contains, so the direct association between the class outside of the subsystem and
the class inside of the subsystem cannot be shown. Dashed lines are used in this instance.

Why do you use EpicsService rather than CADService?

This is an error and will be changed to CADService.



Not clear why there are only two controllers here. Does setting anything in the view then need the accept
button to be pressed. The implication of the text is that setting track on will cause it to happen. If this is
the case what is accept for?

Only two controllers are shown because the purpose of this section was just to demonstrate
how the model works—two examples were felt to be sufficient.

User interface details will be worked out in the Telescope Control Console track. Some widgets, such as
text entry fields should be activated by a separate “Accept” button. This gives the user a chance to make
all the edits he wishes before applying the changes. Other widgets, such as simple toggle buttons, may
immediately activate in some cases. This avoids the hassle of having to press two buttons to achieve one
result.

Not sure that ca_put is the correct terminology to use when a client has registered a monitor.

Will correct.

This states that apply must be pressed when the target bag pressure is entered. So why aren’t zenith set
point and altitude slope also considered as controllers?

See the comment above about using just two controllers to demonstrate system.

Seems at variance with the rest of the document. Very difficult to see what is being added here.

This chapter re-emphasizes the point that the OCS is structured as interacting OCSApps. It
is not a long chapter because the other PDR papers contain numerous instances. In particular, the last
sentence refers the reader to the Planned Observing Support track paper for more examples.

Need to justify the opcodes that go with the CAD command. In particular, is there any standard behav-
iour expected of abort etc. E.g what is expected if you abort the offset command, should it do nothing if
the action is complete, zero out the current offset and go back to where it was, zero out the accumulated
offset? What happened to the Verify opcode?

In the Principal Systems meeting it was decided that the PS designers must support all the
directives, but it is up to them to interpret their meaning, within some general guidelines. For instance,
an abort is generally taken to mean a very urgent, non-graceful stop. If the PS designer doesn’t feel that
there is any difference between abort and stop for a particular CAD, then he will use the same code for
each command.

The opcodes PAUSE and CONTINUE have been removed, since it was considered that pauseable
actions would be the exception rather than the rule. If an action can be paused, then a special pause
CAD will have to be created to access the pause functionality.

“The parts are then sent as the arguments to separate sequence commands to the appropriate PSAs” -
will there be any constraints on the order they will be sent. If not then the TCS CAD/CAR interface will
have to consist entirely of records that preset everything and the PSA will then have to send something
to say that the configuration is over so that the TCS will know to act on it. This seems to be back to send-
ing an apply sequence command.



See “Sequencing” on page 3.

This seems to indicate there will only be one OCS client connected to each principal system? (see com-
ments on Physical Model Description section 2.1)

See “Section 2.1” on page 5.

Does para 1 on page 1-6 mean that CAR records have to be placed in a separate IOC. If so then we lose
1) ability to have links on a CapFast diagram 2) standalone operation. If the OCS requires an Action
Response Database then it should monitor the principal system CAR records and copy the values into its
own local copies.

See “Separate IOCs” on page 4.

If the identity is to be copied into the CAR record then new fields will be needed in the CAD record as
well. This seems to be contradicted by the first line of p1-7 that says “the ps has no knowledge of the
sender of the command”

This point seems to saying that because the cl_data field is copied by PS into the CAR
record, the PS has to know the originator of the command. In fact, the cl_data field should have no
meaning to the PS, and the PS should not rely upon the information in the field being in a particular for-
mat. The job of the PS is to copy the string when it writes busy to the appropriate CAR record.

Why do action/responses not go via the PSA? In the diagram shown, the command layer needs to know
the CAR record names but I thought this was a function of the PSA. Or, is it only the mapping of
attributes to fields of the CAD records that the PSA handles?

Action responses could go via the PSA under a different design. The trade-offs for OCSApp-
PS communication structure are covered in the IOI Track paper “IOI Track Design Decisions” chapter.
You are correct in noting that the CLL will have to use the mapping of CAD records to CAR records that
should be monitored. The current plan is to store this information in the Observing Database, and to
cache the entries in the OCSApps so that they need be retrieved only once.

“The PSA monitors the ARD” seems to directly contradict the last sentence of section 1.7.3 “The PSA
does not monitor CAR records”

Yes, that is a direct contradiction. The “PSA monitors the ARD” paragraph was unfortunately
a leftover portion of a previous design iteration and will be removed. Section 1.7.3 is correct.

What does “when all requests when the one action is completed” mean?

Unfortunately that sentence was mangled. The situation being referred to is a case in which
the client issues multiple action requests, say several offset commands, and then wishes to wait until all
have completed. Rather than waiting on each individual request, the CLL only needs to wait for the last
to complete.

 How does a principal system know when all parts of a configuration have been received?

See “Sequencing” on page 3.

What is meant by a subscription based status capability?



By subscription based, we mean that the OCS message system must allow Unix-based appli-
cations to acquire and publish status information in the same way EPICS IOCs publish status informa-
tion (the monitor ability). OCSApps will register an interest in particular status variables and will be
notified of changes whenever the owner of the status item updates it. The CLL must provide the capabil-
ity to express this interest, and to notify the client when the values change.

As mentioned before, the fact that the PSA does not monitor CAR records means the CCL must also be
able to map attribute value pairs to CAD records or else it won’t know which CAR records to monitor.

Yes. See “Figure 1-2” on page 7.

Again, what happened to VALIDATE?

VALIDATE was removed at a previous OCS review because it was believed to be extraneous
and to cause too much extra work. Validation is only accurate at the time that the checks are performed
and may not be accurate when the actual CAD is applied. In addition, a validation is needed when a
CAD record is applied before the actions can be performed anyway.

In the last Principal Systems meeting, the new “preset” design was introduced (see “Sequencing” on
page 3). The VALIDATE directive may again be useful in this design, but under altered semantics as a
preset. This is TBD.

We’d like to keep the CAR records for action signalling and the CAD VAL and MESS fields for com-
mand signalling. E.g a successful source command has been given and VAL is set to 0 and MESS to OK
whilst the corresponding CAR goes to BUSY. Now the observer changes their mind and sends another
SOURCE command but gets it wrong e.g. types in an hours field greater then 23. If the CAR record is
the only way of signalling this as an ERROR then the CLL will see the action response of the previous
valid command go from BUSY to ERROR.

This is a good point and ultimately a major reason why the accept/reject protocol was
retained in the Principal Systems meeting.

If the last paragraph is true then the CLL will also need to be able to map configuration part names onto
PS CAD names or else it won’t know which CAR record to monitor. (see comments on section 3.2)

See “Figure 1-2” on page 7.

A general point here. Why introduce aliases for terms that already exist. e.g. action variable = CAR
record. This makes it hard to keep track of what is being discussed. (see last bullet of 4.4.3.1 also)

See “Aliases” on page 2.

Paragraph 2. It may be better to let all CAD records have a corresponding CAR. If you don’t then some-
thing has to keep track of which do and which don’t and inform the CLL that it shouldn’t look for a
CAR response. Is this the function of an immediate completion response from a CAD?

Immediate completion was rejected at the Principal Systems meeting because it was
believed to be an unnecessary feature.

3rd paragraph. This idea might be valid for actions that take place very infrequently but can’t be applied
for internal actions that place continuously. For example once a source command has completed and the
telescope is tracking the rotator, a&g probes, secondary mirror, primary etc. will all be continuously



adjusted. Is it necessary for all of these to somehow show busy and if so through which TCS CAR
record? At the moment can’t think of any actions that will be self-initiated.

Whether there are any TCS self-initiated actions or not, the design remains the same. It will
support self-initiated actions should any arise. If the TCS (and other systems) do take actions on their
own and if the operator’s effectiveness might be enhanced by knowing those operations are underway, it
would be good if the IOCs present that in the CAR records as suggested rather than hiding them.

The implication is that the CAR record is special in that it raises more than one monitor when it is proc-
essed. This may not be possible with strings that are buffered. Only the last monitor would be seen.

See “Changes to the PS interface” on page 3. This potential problem will be researched.

 Where does cl_data come from - presumably from the CAD record but then how does something like
dm set this?

Yes, the cl_data field is determined by the OCS and set in a CAD record field. See “Introduc-
tion of cl_data in CAD/CAR design” on page 2 for further comments.

 Unavailable should be a property of the CAD record not the CAR.

As long as systems are going to have unavailable actions, we will retain the UNAVAILABLE
state in the CAR. Alternate implementations for unavailable were discussed at the principal systems
meeting and none had any real advantages over displaying UNVAVAILABLE in the CAR. At any rate,
the CAD record should always be available. It is the actions that are caused by the CAD record’s appli-
cation that are or are not available.

I am not really sure what is being got at here and what the problem is but I am concerned about doing
ca_puts from within a subroutine linked to a record. The implications of doing this for the lock sets that
records are placed in and the priority of the various tasks that make up EPICS need to be considered.

Table 4-1 MODIFY, ALERTED - this idea of spontaneous monitors needs verifying

For both these issues, see “Changes to the PS interface” on page 3.

 ERROR -> IDLE - can’t see point of this transition

We will examine this and change the documents if needed.

“It must set CAR before returning” - why is this if the command is to be rejected? What does “return-
ing” mean here?

The subroutine no longer sets the CAR before accept/reject (see “Changes to the PS inter-
face” on page 3). Returning means that the CAD subroutine has completed and it is known whether or
not the CAD request can be executed. Accept/reject is returned to the PSA.

How will engineering screens handle this?

I am assuming this is the EPICS dm tool issue. See “Introduction of cl_data in CAD/CAR
design” on page 2.

Last bullet appears to contradict 2nd bullet.

The last bullet applied only to commands that cause actions. Immediate completion has
since been removed, but the last bullet is still valid.



Do we really need to design our system to cope with multiple independent consoles entering commands
at any time? Who and why would we be allowing this type of behaviour?

See “Introduction of cl_data in CAD/CAR design” on page 2.

This shows a difference of viewpoint (from this TCS developer anyway!) The CAD/CAR appear to be
tied to specific pieces of hardware. Frequently examples involve filters. But, what is the device for the
SOURCE command? It appears to be the whole telescope but then the device is always busy. In most
cases I believe the CAR records reflect the state of the “action” not the device. For devices like filters the
two are the same but for most of the telescope they are not.

The TCS developer’s viewpoint is correct. The wording in this section needs to be fixed. CAR
records do reflect the state of an action, not necessarily a particular device.

The example given of the filter wheel ending up in position 4 when it was asked to go to 5 does not con-
vince, why would the CAR record go to IDLE and not ERROR in this case?

The filter wheel example was not meant to convince. It simply illustrated a type of error that
the protocol does not handle. Indeed, the CAR record should go to ERROR, but if it does not, our proto-
col will not check SIR records. Instead, we will believe that a transition from BUSY to IDLE means that
the action completed successfully, even if it has not.

This has been brought up before. What does “before accepting” mean here?

Accepting means determining that the arguments are valid and setting the appropriate
response field in the CAD record. Note that R17 is no longer valid (see “Changes to the PS interface”
on page 3).

Given this requirement it must be asked are we using the correct infrastructure. EPICS doesn’t support
commands so we seem to be trying to layer a command structure on top.

This is handled in “Changes to the PS interface” on page 3.

As has been brought up before points 10 & 11 may cause problems. The sequence as I see it would go

10. The PS finds the arguments acceptable and set the accept field to accept
11. Busy:client_id is written to the action’s CAR record
11a. The action is started

This is the modified scenario. See “Changes to the PS interface” on page 3.

This implies the offset completion state includes the completion states of all the other mechanisms that
will be affected by the offset command e.g. rotator, probes etc.

That is an accurate statement.

The TCs presumably just writes busy:client_id into the offset CAR and the internal workings of the
CAR record raise the necessary monitors?



Yes, the IOC only writes a few values to the CAR record when appropriate:
busy:client_data, done, pause, error, and perhaps unavailable. The CAR record processing handles
transitions in the Action Response Protocol, and interested parties receive the updated CAR states.

Should read three pushes not five pushes. This scenario is not quite the same as the filter wheel case. For
example, the “position of the filter wheel is not determined” does not apply to the TCS case. When the
offset is aborted the TCS will continue to track the last base target.

The scenario will be updated with these points in mind.

My feeling is that we shouldn’t complicate our system by worrying about cases like this. I agree it can
cause problems but realistically how often will it happen. If observers are using multiple consoles (pre-
sumably within the same session) to give conflicting commands then they should be responsible for the
consequences.

Covered in “Introduction of cl_data in CAD/CAR design” on page 2.

I don’t think the CAR record should be overloaded in this way. There should be an SIR record to handle
this.

The issue of ALERTED is discussed in “Changes to the PS interface” on page 3. Again,
ALERTED is not needed by the OCS. For now it can be left in the design whether or not it is ever used.
It adds no real complexity to the CAR record implementation.

This might just be a bad example but I can’t see the TCS starting any actions of this sort. In the specific
example mentioned here the reshaping of the primary mirror is a continuous action that will take place
whenever the telescope is tracking or slewing to a new source. It is true that it will happen relatively
infrequently but otherwise it is no different from the continuous updates of the az/el mount axes for
example and there is no intention of setting the CAR record of say the source record to BUSY every
time an update is sent to them.

See “Section 4.2” on page 8.

This scenario can’t happen. The observer will have either configured the system so that the mirror shape
tracks the elevation and temperature or not. If they want to force a reconfigure then they will turn pri-
mary mirror tracking off.

The scenario will be updated with this in mind. Though it may not be accurate for the TCS, it
does correctly discuss how the OCS would handle a self-initiated action.

As for scenario 19. It is based on the assumption that the TCS works in a different way than is planned.

The scenario will be updated as noted for Scenario 19.

There is no scenario to handle the case of timeouts. What happens for example if a script or something
is waiting for a completion status that never happens due say to an IOC locking up. Is there a way of the
OCS breaking out of this type of situation?

The issues related to timeouts were discussed at the PS meeting. We will integrate the results
of the discussions into the OCS documents.



Why is a study of multiprocessor computers needed?

There are many compute intensive applications in the OCS and DHS. The use of multipro-
cessors can possibly simplify our system and increase performance affordably. We will do this testing as
we develop the OCS.

The terms Science Plan and Science Program are easy to confuse. For example the sentence “a session is
associated with a single science plan” in the terminology of the User activity models document would
read “a session is associated with a single observing plan”.

 This seems to be another example of generating synonyms for the same concept.

There’s an error here that will be fixed. The terms Science Plan and Science Program are
similar. The major difference is that Plans have an ordering associated with the observations they con-
tain. Also, Plans will likely consist mainly of links to observations in Programs. Programs will have
links as well, but these will mainly be links to shared calibration observations. An observing session is
associated with a Science Plan, since ordering of the observations is important.

The need for the requirement to support concurrent observations within a single session has already
been raised in the comments on the IOI track.

See “Concurrency within a session” on page 2.

1st bullet. How is this achieved? The entity controlling the observation is the sequence executor. Does it
somehow get routed from the sequence executor to the session manager and thence to any other partici-
pants in the session.

Yes, the Session Manager creates Executors to carry out an observation. The Executor
reports its status to the Session Manager, which knows which participants are associated with the ses-
sion in which the observation is running.

The requirement for concurrency has already been queried elsewhere.

See “Concurrency within a session” on page 2.

“some typical use cases...”?

A use case is a description of an entire transaction in a system. All the interactions between
objects that are involved in the transaction are described informally. The use cases describe the activi-
ties users will want to do with our system and allow us to check the design.

Fig 6 - the methods don’t have any parameters associated with them. Is this deliberate?

Yes, the idea is to focus upon the messages and methods, and not to get caught up in the
details.

Fig 7 - how does the session manager determine to which session to add the participant if there is more
than one session?



There is no hardware support for this. The operator knows who to expect to participate
based upon the proposal, and so he can assign them to the appropriate sessions.

C5 background - “the SM does this to the first next Observation...”?

The wording will be adjusted. Before starting an observation, the Session Manager queries it to
determine the resources it needs.

Figure 2

o Is “equatorial” enough? What about “FK4”, “FK5”, “geocentric apparent”...?

The Coordinate System is actually a pull-down menu. When a system is selected the “Posi-
tion” information box changes to match the particular system.

 o Why are the RA and Dec resolutions the same? RA should have one more digit than Dec. And it
might encourage users to supply accurate positions if the example used 0.01s and 0.1” resolutions.

 o “Epoch” should surely be “equinox”.

 o “Years AD” is not an astronomical timescale. If you put “equinox” there won’t be any doubt what
you’re after.

 o Why is pm “arcsec” and parallax “sec/arc”?

All of these are valid points, and the prototype screen will be updated at some point. Please
note that Figure 2 is for reference only. The real meat of the chapter does not depend upon the details of
astronomical coordinate systems. We will get it straight eventually.

Is it UOB or UOC?

Neither, it should be TCC, Telescope Control Console. The document will be fixed.

Table 1 - what do asterisks on Mount & Rotator console descriptions signify?

They signify that the requirements for these two consoles might be satisfied by the engineering
consoles that must be produced. Though the text indicates this, the table will be updated to make it more
explicit.

10.1 Third bullet. This statement is too one sided. There may be engineering functions that are essential
that don’t fit well into the OCS model. Engineering screens are directed at different users than the OCS
screens.

We will consider this comment and make changes to this section after consulting with GCS
managers.

10.1.1 Are the prototype screens referred to here those in the SDD or something that will be generated
as part of the OCS work package?

They refer to the screens in the SDD.



Section 7.3.1

How do the facilities provided by the PV-Wave scripting language compare with those provided by the
Tcl scripting interface which is a product of the IOI track?

This is a very broad question which we are not willing to undertake. PV-Wave is specified by
the project, not the OCS team. There is a requirement to support it so we will.

The first paragraph implies that either the OCS must apply the commands in an order acceptable to the
PS or there must be some means of notifying a PS when it wants the configuration applied. This in turn
means that all PS commands must be of the “preset” type where the data is validated and stored inter-
nally but not acted on until the ‘apply” is received.

This issue has been covered in “Sequencing” on page 3.

The definition of config(reset) seems inconsistent. How can the system be set back to its start-up state if
it doesn’t read its initialisation file?

Many systems support the concept of a “warm start” and a “cold start”. That’s what we are
getting at here. These commands are not new and have been reviewed before.

config(apply) does this mean a PS still needs a CAR apply even though it doesn’t have a CAD apply

The comment about the apply CAR will be removed from the table.

It is unclear whether a principal system can stipulate what order commands are sent in. The second and
third sentences in Section 6.0, para 2 seem to be contradictory.

This should no longer be an issue (see “Sequencing” on page 3). The wording must be updated
to reflect the new paradigm.

Is the scenario being discussed here the implementation of a “clear” on a CCD?

Yes.

Section 7.4 This section will need to be reviewed in the light of the PS requirements. e.g. it needs to be
decided under what circumstances access from the engineering screens will be allowed for example.
Also, my reading of the CA access security mechanism is it operates by user id not group id. This would
mean that in the security configuration file we will have to list all the potential members of the operator
and operations group.

My reading of the CA Security docs suggests groups are okay. We will read the sections
again. The CA Security is designed to work with User Access Groups. Each User Access Group is a set
of User IDs so Chris is really right. We will need to keep parallel groups in the IOC and in the Unix
hosts to make this work as described in the paper. This will need to be done anyway.



It is not clear to me that allowing concurrency within a session is any different to the scheme originally
outlined in the SDD which is described in section 5 as “a more complex design than is required to sup-
port efficient use of the telescope”.

The paper may be somewhat over zealous in describing the benefits of the new approach.
The SDD design allowed resources to pass freely between instruments (what we call sessions). As long
as there were observations to run, they would. It was much more automatic than the current design. The
PDR design requires the operator to actively participate in assigning resources to sessions. The session
concept does simplify thinking about the design, and it meshes well with the way we believe the tele-
scope will be used.

If all observations were assigned to a single session then the description in the 2nd bullet implies we
would get full automatic concurrency so why bother creating multiple sessions in the first place? I can
see the purpose if the other session belongs to another observer but for planned observing this wouldn’t
be the case.

It is true that if all resources were assigned to one session and there were observations in
the session that required disjoint sets of resources, they would execute as suggested. The system sup-
ports this but it is probably not how the system would be used.

What would be the consequences of dropping the requirement that concurrent operation of observations
within a session be supported? Concurrency could still be achieved but only by starting another session.

See “Concurrency within a session” on page 2.

Would it not be better to submit the proposals to the NGO for technical assessment and prioritising in
one step rather than sending them to the IGO then back to the NGO?

This is an issue for the Science Operations group. The scenario described here was pre-
sented by a project scientist in the Operations group. Either way, there is no impact on the OCS.

 Does the term “observer” used here refer to the OSO or the external observer?

It refers to the on-site classical observer or the on-site staff observer (whomever is blessed).
The burden should be upon him/her to provide as much information as possible.

 Under “OTHERS?” are there any planning tools to efficiently schedule observations? even just tools to
show rise/set times, moon phase etc.

This is the subject of the Scheduling track paper. I think the limited planning tools in the OT
should show things like rise/set times, as you suggest.

A comment only. I think how “ambitious” an observer is will be directly related to the quality of the OT.
If the tool makes life easier for an observer then all observers will fall into the “ambitious” category. If
the OT can not be shown to give an advantage then observers will fall into the “sloven” category. Fol-
lowing on from this, Gemini should quantify the increased efficiency that is achieved by using the OT
and then require all observers to use it.

I agree the quality of the OT is directly related to its usefulness, and likelihood that it will be
used. We will work very hard to make sure the OT is successful.



How is the operator to judge that the configuration looks good? What is he going to be looking for that
the system won’t check for when he pushes “Go”? If there is nothing then the observation should start as
soon as the resources are allocated with the option that the operator can over ride if he wants to.

Giving the operator an opportunity to evaluate the configuration doesn’t imply that he
always must. It also doesn’t mean that he will catch a problem if one exists. We believe it is important to
give the on-site operator a convenient means of finding out what the requested configuration is before it
is applied. This currently means his screens will be configured to match the target configuration before it
is applied. No active checks of the configuration are planned. In fact, it is an OCS/Gemini requirement
that only the system operator control the telescope. Making him push “go” is the way the operator
“controls” the telescope.

Steven presented his comments in two separate responses, to allow us adequate time to review them.
They have been recombined below. Like Chris Mayer and Patrick Wallace, Steven’s comments are
divided between general remarks and comments specific to particular documents.

I notice that ICD/1a, ICD/1b and ICD/2 are not part of the review material. These ICDs are vitally
important for the Gemini software system, and I think their contents needs to be reviewed. I assume that
a description of the ICD/1 and ICD/2 interface is contained throughout the OCS PDR material and these
ICDs will be updated if necessary after the PDR.

Who is responsible for designing and implementing the CAD, CAR and SIR records, and who is
responsible for reviewing them? Are they outside the scope of the OCS work package? (The OCS docu-
mentation says these are under the control of the Gemini Project Office). I think their design needs to be
discussed and reviewed, and the OCS PDR would be the best time to do it.

The OCS is not charged with the design and implementation of the ICDs. Like any other
Principal System group, we can suggest changes to the design, but control of the ICDs and development
of and records is in the hands of the project office.

I am worried by the fixed number of arguments a CAD record has, and the fact that some of the com-
mands being thought of for the A&G system need a lot of arguments already. Can the CAD record be
redesigned with a variable number of arguments (e.g. by pointing to a linked list of EPICS records), or
do we need to invent different-sized CAD records with differing numbers of arguments (e.g. SMALL-
CAD, CAD, BIGCAD)?

This issue was discussed at the Principal Systems meeting. Since it does not directly involve
the OCS design, it is not covered further here.

If a CAD record can accept “apply”, “pause”, “continue” and “cancel” opcodes to control the execution
of its command, why is it necessary for principal systems to recognise the “PAUSE”, “CONTINUE”,
“STOP” and “ABORT” sequencer commands? Can these not be implemented by sending the appropri-
ate opcode to the OBSERVE CAD record?

First recall that PAUSE and CONTINUE directives were removed in the Principal Systems
meeting (also see “Section 1.7.1” on page 6). The PAUSE, CONTINUE, etc. sequencer commands, as



defined in our sequence command paper, are used to pause and continue the action of observing. Even
though aborting and stopping the OBSERVE action could be implemented in CADs as the abort and
stop directives this solution is not general enough. The sequencer commands are to be system-indepen-
dent and that means that they can’t be tied to CAD record features. For instance, the DHS may not have
a CAD record interface. An ICS developer may implement the abort and stop directives in the Observe
CAD, but they won’t be used by the OCS. We need to retain separate CADs for the sequence commands.
We will make name changes to make sure they aren’t confused with the record directives.

The OCS documentation says that principal systems will normally be commanded using EPICS channel
access, and only unusual or visitor instruments would use anything else. However, the DHS is a stand-
ard principal system that doesn’t use EPICS. What mechanism will the OCS use to command the DHS?
Portable channel access and DRAMA/DITS are possibilities.

We are having discussions with the DHS on this issue.

The documentation says there will be one Principal System Agent for each Principal System. I assume
the OCS will have the following PSAs:

• One for the TCS

• One for the DHS

• One for each of the four instruments that are currently installed

• One for the High Resolution Wavefront Sensor and Acquisition Camera

 i.e. there can be up to 7 PSAs active at one time.

The idea that the HRWS/AC is a separate instrument is new to us. However, you are correct
that there is a separate PSA for each instrument, for the TCS, and for the DHS. This should not cause
any problems.

Is the special case for immediate completion of a command executed through a CAD record really nec-
essary? What are the benefits, for example, of activating a CAD record to set a variable rather than just
setting that variable with a channel access put (to a SIR record)?

Immediate completion was rejected at the Principal Systems meeting because it was
believed to be an unnecessary feature. If we find that there are many commands that complete immedi-
ately, then this decision may have to be revisited. At any rate, CAD/CAR is the interface between the
OCS and EPICS based principal systems. We feel it would be poor design to try to bypass this interface,
even for simple commands that just set a variable.

Can the OCS cope with outside interruption of a command, for example someone using an engineering
console to alter the target position for the telescope? Will this modification be noticed or will it be
missed because the request didn’t go through the TCS PSA? I guess this sort of access can be controlled
using Channel Access Security.

If the outside command uses the CAD record interface, then the cl_data field will be suffi-
cient to detect the interruption. If the IOC sets the CAR status, the rest of the system will know about its
actions. As you have pointed out, if we rely on the PSA to monitor conflicting command application,
then any command originating outside of the OCS would give us trouble.



On a related note, the OCS has been designed to be able to cope with one operator interrupting another
operator’s command, and the first operator being notified if this happens. Will this ever happen in real
life if access to resources is carefully controlled?

 Am I right in thinking the most common use for this interruption capability would be to allow an oper-
ator to interrupt a self-initiated command or be notified when a self-initiated command interrupts the
operator’s command?

See “Introduction of cl_data in CAD/CAR design” on page 2.

I think there are a couple of flaws in the action variable protocol state machine. In the current model an
error will be ignored if it occurs during the transitory period while the CAR record is passing through
the MODIFIED or ALERTED state. I think these states should also recognise an “error” input and move
to the ERROR state.

This situation is not possible. The CAR record should move to the MODIFIED (or ALERT)
state and back to BUSY atomically in one record processing. If the next input is error, the transition will
be made from BUSY to ERROR at that point.

 I think the PAUSED state should also recognise an “error” input. What if some hardware goes down
while an action is paused, for example?

We will add an error transition from PAUSED in our proposal.

 While debugging a Gemini system it would be useful to be able to log the inputs received by the CAR
record, even if they are ignored and result in no change of state. (at the moment I can think of no circum-
stances in which an “error” would be received in the IDLE state, but you never know...).

Agreed.

Sometimes there may not be sufficient information to check all of the arguments of a CAD record at the
time the command is accepted. I haven’t seen any recommendations for what to do in this case in the
OCS documentation, but I assume the correct thing would be to accept the command and trigger an
“error” in the CAR record if when the time came an argument was not acceptable.

I believe this is the only appropriate action that could be taken. Before a command is
accepted the CAD record subroutine do its best to check the arguments. If a problem is encountered
later, an error should be written to the CAR record.

Your model of what an instrument does on receipt of an ENDOBSERVE command is not correct. An
instrument will read out its detector and store the data to disk as soon as an OBSERVE command fin-
ishes. ENDOBSERVE tells the DHS when the data are available. I think we will need to discuss this.

We disagree on the semantics of ENDOBSERVE. In our view, the OBSERVE command con-
tains an “observation id” argument. OBSERVE tells the DHS to expect data from an ICS with this id,
and tells the ICS to begin an exposure. When OBSERVE completes the instrument reads out its detector
and begins to pass the data along to the DHS, using the given observation id. ENDOBSERVE is issued
when OBSERVE finishes, and it completes whenever the detector is finished reading out.

We are discussing this discontinuity with Steven.



The design for planned observing seems good. Will an observer have the ability to: (a) redo an observa-
tion if it was not satisfactory; and (b) extend an observation if it looks likely that a sufficient signal to
noise will not be achieved? (This comment is related to the next one).

Case (a) is handled by the design. The observer has control of the observation queue and
can reorder/add to it at will. In talking with the project scientists, we don’t believe support for (b) is
required by the Gemini Control System.

I think an observer needs more ways to interact with an executing sequencer recipe than just pausing
and continuing the current observation. There needs to be an ability to pause the recipe as well. Here is
a list of examples:

a) Pause the current observation.
b) Continue, stop or abort a paused observation.
c) Wait for the current observation to complete and then pause the sequence recipe.
d) Stop or abort the current observation and then pause the sequence recipe.
e) Modify a paused sequence recipe (e.g. add more observations or increase the exposure time).
f) Continue or abort a paused sequence recipe.

 All these functions were needed by the CGS4 EXEC system, which had a similar purpose to the OCS
sequence executor. This degree of interactive control enabled the observer to adapt to changing weather
conditions (e.g. a deterioration of seeing in the middle of an observation resulting in an increase in the
required number of observations). It would be useful to talk with Alan Pickup on this subject, as he
designed the CGS4 EXEC system.

The queue of observations is dynamic, being controlled by the observer with the ultimate
approval of the on-site operator. The design will allow all the operations above. Some operations are
done by the operator and some by the observer.

I notice the OCS design assumes that PVWave will be used for data visualisation. Is this Gemini deci-
sion now cast in stone? If it is not, when does the OCS need a firm decision?

PV-Wave continues to be one of the baseline software tool decisions. Severin and OCS will
be discussing this (I think).

Please note that the High Resolution Wavefront Sensor and Acquisition Camera (HRWFS/AC) should
be treated as a Gemini instrument rather than a TCS subsystem. It should therefore have its own Instru-
ment Console. When it behaves as a HRWFS it generates data that needs reducing, just like other instru-
ments. When it behaves as an acquisition camera it generates images to be displayed by a quick look
server.

 I think it would be useful to treat the HRWFS/AC as a separate resource, as this will allow the OCS
greater flexibility (in case an observer wishes to use another instrument as an acquisition camera for
example). However, in normal use the HRWFS/AC should be allocated to any observing session which
requests the telescope beam resource.

As mentioned above, the idea that the HRWFS/AC is a separate resource is news to us. For-
tunately we have taken an abstract view of resources in our design, and so can accommodate new ones.

I agree with your plan for the development of instrument consoles. There needs to be a collaboration
with the instrument groups, especially with the project scientists for the instruments. However, what
happens after the OCS work package has been completed and a group somewhere wishes to develop a



completely new instrument (I am optimistically assuming that Gemini will be so successful that its col-
lection of instruments will grow steadily)? In this case who develops the instrument console?

I would imagine the maintenance staff will be responsible for developing new consoles using
the support libraries provided by the OCS work package. In any case, this isn’t an OCS development
issue, and so it won’t be commented upon further here.

Can the Planning Tool be used off-line at an Observer’s home site? I notice this tool interacts with the
Status Alarm Database, which I assume will only be available on the Gemini Local Area Network. I
think it would be useful if observers could try out the OCS tools and construct their science programs in
advance. (I may be barking up the wrong tree here. Is the Planning Tool the one that allows this, or is it
something else?)

Observers should be able to construct both Science Programs and Plans in advance. The
Planning Tool is used to query available Science Programs to aid the construction of Plans. If used on-
line, one of the query options will be something like “show me the observations that could be executed
given the current conditions.” This query would need the up-to-date environmental information in the
SAD. If used for preplanning observations, this feature would not be meaningful.

I think consulting the Gemini scientific community to find out how they would like the OCS to work (in
“User Activity Models in the OCS”) is a good idea. Are the project scientists for Gemini instruments
included in the group of people consulted? These people will have an idea how they would like their
instruments to be used. (It may be worth having a discussion on the OCS at a meeting of the science
instrument working group, for example).

We will work with the various Gemini committees to assemble a group of testers for the
observer programs as outlined in the PDR documentation.

I must admit I found the contents of this document difficult to grasp in the time available.

Section 1.7: I can see there is a potential for effort to be wasted generating OMT diagrams with an ordi-
nary drawing tool and then redoing them for an OMT design tool. Is this likely to be a significant
amount of effort?

It will not be a significant effort to reproduce the drawings using a design tool. In fact, many
of the drawings in the PDR booklet are repeated, showing slightly different aspects in each picture. At
any rate, the design will continue to evolve through the detailed design and implementation stages. The
effort of using an object-oriented methodology without tool support more than makes up for the initial
cost of reproducing a few diagrams.

Figure 4-2: This console makes a good example, but will the OCS really have a “Primary Support” con-
sole like this? It seems the sort of console that would be implemented in an engineering user interface.

The Primary Support console is among those listed in the table of prototype OCS console
screens in the SDD (Table 5-2, page 5-37).

Figure 4-5: The bag pressure setting example does not use CAD and CAR records, so it doesn’t seem a
typical example.

The diagram will be updated to match the current design of the Interactive Observing Infra-
structure.



Section 1.7.3 says “The PSA does not monitor CAR records”, yet section 1.7.4 says “The PSA monitors
the ARD”. Is there a contradiction here?

Yes, this is a contradiction. The paragraph in Section 1.7.4 is wrong (see “Page 1-7, 2nd
paragraph” on page 7).

Section 2.6.1: I don’t think R25 is true. The SAD by its nature is a public database and could therefore
be monitored (or even changed) by other software outside the OCS. Maybe by “software library” you
meant “OCS software library”?

Correct. This requirement refers to OCS software and the document will be updated.

Section 4.4: Table 4-1 says that the ERROR state can be cleared back to IDLE by receiving a “done”,
but this path is not shown in Figure 4-3.

Will be fixed in Figure 4-3.

Section 5.2 (R14): Can a single CAR record be shared by several CAD records? I note that have a single
shared CAR record would make the situation described in section 5.4 worse. We will need to discuss
this.

Yes, there is no restriction on the number of CAD records that affect the same CAR. It isn’t
clear to what situation the second sentence above refers.

Chapter 6, scenario 4: If I were designing the user interface I would leave the light amber rather than
green to indicate that the filter wheel has been left in an illegal position. I would also set the OBSERVE
command CAR record to UNAVAILABLE. Does this sound ok?

The details of colors/situations can be worked out in the detailed design. However, the
action variable protocol does not easily support the situation you’ve described. Unless we extend the
protocol and require that the PS write a special value to the CAR record, we will only notice a transition
from BUSY to DONE. Also, the abort command completes successfully, so moving back to green is con-
sistent. The fact that the command was aborted will be reflected since it will cause the CAR record to
move to MODIFIED temporarily when the abort command is accepted. Finally, simply because a com-
mand was aborted does not imply that the actions are UNAVAILABLE.

Scenario 7: Although there will be a few milliseconds when the offset button push cannot be accepted,
will the push not be queued in a buffer by the user interface anyway?

No, the button cannot be pressed a second time until the command resulting from the first
push is accepted or rejected. GUI toolkits are usually designed so that when the button appears
depressed and any clicks are ignored.

Table 1 (apply): Do all principal systems have to have an APPLY CAR record, even though they don’t
have an APPLY CAD record? This violates the recommendation in other parts of the OCS documenta-
tion that each CAD record should have only up to 1 CAR record.

The statement “Principal systems should cause the apply CAR record to become BUSY...”
should not have been included in Table 1. It will be removed.

Table 1: (observe/endobserve): Both these commands need a file name argument as well as observation
ID (unless you are planning to name files based on observation ID).

The DHS handles data storage. The OCS doesn’t work with files or tell the DHS which file
names to use. The DHS will likely map observation IDs to filenames, but that is internal to the DHS.



Figure 1: Instruments do not read out their detector during ENDOBSERVE. Instruments will usually
ignore ENDOBSERVE.

See “OBSERVE/ENDOBSERVE semantics” on page 18.

Section 7.1: Possible solutions are: (a) monitor a shutter open record; or (b) use a shutter open “alert”
sent to the OBSERVE CAR record.

We would like the recipes to remain principal system independent if possible. When is an IR
instrument shutter open? We are discussing sequence commands with Steven.

Section 8.0: I am completely confused by this section. It implies that every principal system has an
APPLY CAD and CAR record, which contradicts all the other OCS documents I have read. Please can
you explain.

You were right to be confused. Apply CAD/CAR did not exist in the PDR version and should not
be in Table 2.

This looks good. My only comment is that saying you trust users (e.g. page 4) makes you sound a little
cavalier about security. The fact is you can trust users because they have already been through a screen-
ing process (telescope allocation committee) and have already had to log in to the system and supply a
password.

We never meant to imply otherwise and apologize for the cavalier tone.

Section 9.1: Despite its preliminary nature, I like the way the session manager is going. It looks like a
much more powerful system than I have seen at any other observatory. I can see some features that
might enhance this tool, for example: (a) Each observation could be displayed inside a time window in
which that observation had to take place. (b) Each observation could have an icon summarising the
observing conditions (good, moderate or bad) it requires, and the weather monitor could be displaying
the icon representing current conditions. This might allow the operator to make decisions about which
observation to do next. See comment 13 above about the need to be able to redo failed observations and
extend observations.

These are good ideas and will be considered during the detailed design

Section 13.0: It may be worth including some KPNO telescope operators in these discussions. They may
not be officially connected with Gemini but they are a local resource you could use for ideas.

We will consider and research this idea.

Table 23: Why are the GUIDE and ENDGUIDE commands not mentioned?

The interface describe in Table 23 is the Executor Controller interface. It is the public inter-
face that allows control of an executing Sequence Executor. A system controlling a sequence executor
will probably not need to tell the executor to send GUIDE and ENDGUIDE. This may need to change as
we further define this part of the system.

Section 9.0: This implies that the GMOS PDR material needs to contain some preliminary user interface
requirements. (Not an OCS comment, just an observation for GMOS).

Table 1: Please add “HRWFS/AC” at both sites.



Even though we are now viewing the HRWFS/AC as a principal system, I’m not sure it is a
user instrument. It seems to me it’s more like the secondary mirror than the IR Imager.

Are you sure a mid IR imager is being delivered to Cerro Pachon? That sounds strange. Has Susan
Wieland verified this list?

I believe this list is accurate. We will double check the table.

Please note that Michelle is a mid IR spectrograph.

Table 4 will be updated.

Section 7.0: I mentioned in part 1 of these comments that instruments do not normally read out their
data at the ENDOBSERVE stage.

Agreed, they begin to read out as soon as OBSERVE completes. I don’t find a reference to
ENDOBSERVE in Section 7.0. Also see “OBSERVE/ENDOBSERVE semantics” on page 18.

Note that there is the possibility that the observer might verify an observation *before* the detector has
finished reading out. Some detector controllers will have the ability to transmit their data a bit at a time,
and the quick look display will gradually build up. The observer might watch this display and then give
the go-ahead for the slew to the next observation when he/she has seen enough to be convinced the
observation has been a good one. We need to consider this possibility as well.

I believe this case is handled by option 3: move to the next observation after the observer
explicitly verifies the observation.

The comments are divided between general and specific topics.

I’ve worked my way through the OCS PDR documents, although it took me much longer than I
expected, so as usual I’m sending in my comments at the very last minute. I’m sorry about that.

I’m actually finding it hard to say anything very much that’s useful. I’ve just reviewed my comments,
and most of them seem to be vague and occasionally philosophical rather than really concrete. I’m
impressed by the evidence that the various ways the system will work have been thought through pretty
carefully. This is mainly a reference to the use of scenarios, which I found very useful; not only do they
demonstrate that the system can handle the situations they cover, but they also help to give an outsider a
‘feel’ for the way the various bits of the system fit together. Getting this ‘feel’ was the hardest bit for me.
Going through the OCS documents, there were times I felt I was getting a detailed description of some
of the trees, but the overall shape of the wood was still something of a mystery.

When a group is sufficiently far advanced with a design, they know the overall framework so well that
they no longer feel the need to describe it, and indeed they shouldn’t need to describe it in the detailed
documentation for individual parts of the system. However, I felt that an informal description of the ‘big
picture’ would have helped. However, in the end I think I got there.

It is becoming clear that effort should have been put into an overview document of some
sort, perhaps a series of diagrams labeled with pointers to applicable documents. We did tend to focus



on the details of how the various applications interact, since we believe that is the purpose of the prelim-
inary design. See also “Complexity of the Design” on page 2.

As mentioned in the SDR documents, we viewed the SDD OCS design as a prototype to be used to
extract requirements for the OCS. The OCS is now in the Architectural Design phase of the ESA soft-
ware process, also called the solution phase. In this phase we are to show an implementation-indepen-
dent solution that can satisfy the requirements and the uses described in the SDD. An important part of
the PDR documents is the rather abstract physical model which we are committed to. So while the PDR
documents may seem abstract, I believe the design is more comprehensive and now considers many
more issues that previous designs including communication with systems other than EPICS-based sys-
tems, operator activities, data-flow in the OCS, access control, and simultaneous observations.

The big picture, in fact, seems to have become more abstract than it was at the SDR. In a way, that’s
good, because it’s good to describe a layer of the system in terms of just the capabilities of, say, a GUI,
rather than explicitly assuming this is TCL/TK. However, it does make it harder to visualise the system
in operation, and I’m a little concerned that the project is this far advanced and still giving the impres-
sion that so many implementation decisions are still to be made. I hope this is a false impression that
comes mainly from the abstract nature of some of the system descriptions.

It isn’t clear to us that specifying particular software packages to use during implementa-
tion aids understanding of the design. Further, it unnecessarily constrains the design. As you know, the
design should drive the implementation choices, not vice-versa. The project is only beginning the
detailed design of the first track (the Interactive Observing Infrastructure track), so we believe that the
lack of implementation specifics is appropriate.

Having said that, another general concern I have is that the whole system design is nevertheless very
heavily influenced by the use of EPICS at the lower layers. However, I think the move towards working
with partial configurations is good - I was always rather concerned about the need to work with a com-
plete configuration at the top levels of the system. There is a tendency in the documents to give the
impression that you’re having difficulty meshing a status-driven system (which is how EPICS comes
across) with the command-driven system you want at the higher levels. I think that what’s really happen-
ing here is not so much that EPICS is not event driven (after all, it is!) but that you are building a hierar-
chy on top of an event- driven flat lowest level, and some of the crispness of the lowest levels is in
danger of being lost in the hierarchy.

It is difficult to respond to this comment. You are correct that a conflict is occurring between
our requirements and the support that EPICS provides. We have a system based upon commands, yet
there is no support for traditional commands in EPICS. We must be able to send instructions to Princi-
pal Systems, and we must know when those instructions have been carried out. This requirement has
lead us to the command based system described in the PDR. We feel in our environment building this
upon EPICS is absolutely necessary. As for losing “some of the crispness”, we see it more in terms of
making EPICS more usable. We also feel that we need to use as many of the features of EPICS as possi-
ble so traces of the EPICS design are visible in the design. These are usually features of EPICS that we
feel are good features.

We are seeking the advice of members of the EPICS consortium who will review portions of our EPICS
interface, and will fold their comments into the design.

As you clearly realise, it’s largely a question of completion of commands and the origin of commands. If
someone starts a filter moving in EPICS, eventually the filter gets to the required place, but by then
EPICS itself has lost track (never cared, actually) of who asked for it to move, and so getting a report
back to the command originator gets complex. And having two competing commands trying to move
the same filter gets really messy. This is something that you’ve tackled in some detail with the Action



Variable Protocol, and the scenarios convince me that it’s been well thought through. The description of
it keeps using the term ‘monitor’ and I would like to see it made explicit that this does not involve poll-
ing, but is a proper event- driven mechanism. I’m thinking here of phrases such as ‘The CLL CAR mon-
itor protocol notices that the CAR went from BUSY to IDLE’ (IOI Track, page 6-2, item 7 in scenario
2), where ‘notices’ is not the same as ‘is told’. Am I being too fussy here? I hope this is just a question
of presentation, rather than anything deeper.

You are correct that monitoring should not (and does not) imply polling in our system. We
are planning a subscription based system where applications register their interest in a variable with a
callback function. When the value of the variable is updated, the callback function is invoked.

Interestingly, I suspect that working with configurations, previously set up as part of a planned observ-
ing system, just split up and fed to the relevant parts of the system that have to configure their parts of
the system, makes for a neat meshing between the planned observing and the EPICS systems, which
may make it harder to modify things piecemeal in an interactive observing mode. I know that Gemini is
predicated on the need for scheduled observing, and my only concern here is that I expect that it will
take some time for this to start operating smoothly, the initial usage of the system will tend to have a
larger interactive component than later usage, and that any awkwardness in the interactive part will
reflect badly (albeit unfairly) on the Gemini software system. There may be a number of ‘sloven’
observers (‘User Activity models, p6) in the early days.

We don’t share the concern that the configuration idea will complicate interactive observ-
ing. Classical observing will be conducted primarily with instrument and telescope consoles, in much
the same was as observatories have been running for years (albeit with more complex hardware). The
fact that configurations are the underlying implementation mechanism hopefully will not be apparent to
the users of the system.

I’m struggling here to try to articulate some nagging worry. I think the design has become rather
abstract, rather complicated, and while I actually think it’s been well thought through, I worry about
your chances of getting it completed in the specified time-scale. I’m open to reassurance on that score.
For all I know, most of this has already been coded and is running! In fact, revisiting these comments
having just typed in my detailed comments, I get the real feeling that the system design is rather better
than the impression of it provided by the PDR documents, which in many places have a lot of very
abstract formalism where a plain English description of what these things mean in practice would have
been much clearer.

Others have expressed similar concerns (see “Complexity of the Design” on page 2). As for
plain English descriptions, I would have to see examples cases that were treated with too much formal-
ism. I’m sure they exist, but its easier to explain individual cases and to get an idea of exactly what you
consider to be unnecessarily confusing.

I see this was ‘reference only’, but I’d like to say that it doesn’t seem to allow for trustworthiness chang-
ing with time. It isn’t really that ‘user x’ is ‘trustworthy’, it’s more that ‘user x is tonight’s observer, so
we have to risk trusting him for this night but tomorrow he won’t be the observer and we don’t want him
anywhere near the system.’

The model described above is just what is supported in the Planned Observing Infrastruc-
ture. For planned observing, the observer must contact the Session Manager application to initiate a
session. The on-site operator explicitly grants resources to the session. The observer’s Observing Tool
then interacts with the Session Manager alone to start/stop/pause observations. Ultimately, access to
system resources is controlled by the on-site operator, through the Session Manager.



 Again, ‘reference only’, but let me make one general comment. At present we don’t often see concur-
rent observing. What we do see is observing overlapping with testing and with calibration. In these
cases, the testing or calibrating systems run better by simply starting up a completely new observing
system but with the shared resources (which they don’t want to use anyway, such as the telescope) run-
ning in simulation modes. Running multiple instances of a whole system is often easier than having one
huge system trying to manipulate and separate multiple users. I realise that when you have genuine con-
tention for systems, then the sort of thing described here is necessary, of course.

For the example of observing overlapping with testing, we also intend to use separate ses-
sions. Concurrent observations within a session are meant to deal with those cases in which an observa-
tion needs a resource for only a portion of its duration. Once one observation is finished with the
resource (not necessarily when the observation completes), it can release it for other observations to
use. We can’t predict how often concurrent observing will occur, but supporting it is one of the require-
ments of our design.

See also “Concurrency within a session” on page 2.

The various calls documented in this all seem to be ‘conceptual’ (and reasonably so). I mean that gener-
ally when an API is completely fleshed out and implemented all sorts of additional parameters often
appear connected merely with housekeeping and making sure the various libraries actually have all the
information needed to do the job. There isn’t any sign of that here; I assume this means that the imple-
mentation step hasn’t happened here, and only wanted to comment that this is the point when a number
of changes often end up getting added, and I can’t see that feedback step in the various design stages.
(Maybe it’s only me who designs things so much on the fly that these changes are needed.)

The development process isn’t strictly sequential, as implied by the terse discussion in Sec-
tion 1.6.4. In fact, an iterative approach is recommended by Rumbaugh in which a minimal skeleton is
first implemented. The skeleton handles a single task and is developed at each step of the process. Addi-
tional functionality is then added to the skeleton incrementally [1]. This idea is present in the develop-
ment process through multiple alpha and beta releases.

Only to comment that dividing systems into layers makes for good systems design, but often can result
in systems that don’t work as well as monolithic systems because ‘this bit can’t do this because to do so
it would need to know such and such and that’s the perogative of a different part of the system’. I seem
to have had to use this line too many times to frustrated users, none of whom ever accept it, and who cer-
tainly don’t care that having done it this way is the only way to make it maintainable, upgradeable, etc. I
don’t think there’s a solution to this, and I’m sure you’re all aware of the problem. This seems to get
worse with distributed systems, as well, where the ‘localisation’ of information is often a big problem -
I was amazed in our 2dF system how many parts of the system needed to know the telescope position,
and one part even needed to know the details of the telescope distortion model! (I forget why - I’ve tried
to erase the whole thing from my mind..)

Noted.

Views need to know about subject data but subjects do not know anything about views True in theory,
and desirable, but often in practice a subject needs to send the data to the view and so needs to know that
it needs it. (Otherwise, the view has to poll for it.) At AAO we certainly end up with a lot of specifica-
tions that allow a lower level task to be told the name/location whatever of a higher level task to which it



is to send information, which allows a low level task to be built without assuming the existence of spe-
cific higher level tasks, but still able to communicate directly with them.

We do not plan to rely upon polling. Using a package like Tcl/Tk for instance, you can
assign callback functions to variable changes (variable traces). All that is needed is some mechanism
that allows the subject to alert the views and controllers of changes.

Just a moment to ride a personal hobby horse about not liking calls such as ‘putWait()’, which block
until a response is received. You always have to ask ‘what happens if the response doesn’t arrive?’. I get
the impression that some of the blocking calls look better if implemented in a multi-threaded system,
and would like to comment that even in a multi-threaded system you have the problem of dealing with
the tidy closing down of errant threads. Although somewhere in the documentation the statement is
made that Solaris supports multi-threading it isn’t quite clear to me how much use is intended to be
made of this. If you are going to use threads, you have to know how you are going to handle the case
where one blocks and needs to be closed down. (Which can be worse than trying to close down a proc-
ess in a multi-processing system, since the system will do more of the garbage collection in that case.)

We do plan to use a threads package, and supporting for creating and destroying them is a
minimal requirement.

Error logging is a problem, and I wondered if you had looked at the ADAM or DRAMA error logging
systems, which allow detailed error logging by low levels of the system which can be annulled by
higher levels - this is because often only a low level knows all the details of an error, but only a high
level knows if the ‘error’ is really an error that should be reported, or just an enquiry that failed or some-
thing equally innocuous.

We will take a look at this. The DHS team is responsible for some of the error logging.

I started to wonder about how values such as pressure were displayed in a meaningful way. If you have
a spectrograph, for example, you might know the slit width in mm, but to display this meaningfully, you
need to know what this comes to in arcsec. Doing this conversion might require knowledge of the optics
of the system, telescope details, etc. Getting hold of this poses problems for a distributed system, but is
something an astronomer expects to be simple! See the comments above on ‘Architecture’. The physical
values that a sub-system knows are often not what an astronomer needs to know, and the conversion can
require information from many other sub-systems.

In this case, the instrument would provide status items in the correct units. If values in dif-
ferent units are needed, the instrument makes the value simultaneously available in all units. The screen
then shows a different database value depending on the observer’s wishes.

General. I had difficulty getting to grips with the question ‘just what is an OCSApp and who writes it?’
Since it isn’t a single task, but a multi-layered thing with views and subjects, it isn’t necessarily all pro-
duced by the one team. If the user communicates with the ‘controller’, just what sort of a piece of soft-
ware is the ‘controller’? The diagrams seem to imply that the user communicates individually with the
controllers of the various OCSApps that comprise the whole system. This sounds like a system built out
of engineering level interfaces. Shouldn’t the user be presented with a view of the Gemini telescope,
including its instruments, as a coherent whole? That is, shouldn’t the user talk to some controller, which
then talks to the controllers of the various OCSApps? Do you plan to build an overall user interface as
an OCSApp that does nothing other than talk to other OCSApps? I felt this wasn’t made very clear.

Each OCSApp is produced by the OCS team alone, though the “fixed-part”, the System Sub-
ject is produced once during the Interactive Observing Infrastructure track.



We do not believe that the use of controllers implies or tends toward a system built upon engineering
consoles. Controllers are simply the buttons, keyboard entries, dials, etc. that allow the user to interact
with the system. No matter how we structure the OCSApps, controllers must be present. It is important
to note that not all OCSApps will have a controller, or even a view for that matter. Only applications that
directly interact with users (e.g., consoles, script executors) need these. The SVC model only describes
how functionality will be organized in an OCSApp. It does not contain any functionality or requirements
by itself.

‘Clients of the IOI are consoles, script executors, and shell tools’. I’m surprised that there doesn’t seem
to be a place for what the ADAM/DRAMA world would call a control task - a sequencing program writ-
ten in a high level language such as C or C++, which controls a particularly complex sequence involving
a number of separate instruments, so as to be able to present a higher level of abstraction to the user,
who can see a subsystem that combines spectrograph and detector to take an exposure at a given central
wavelength with a specified exposure time, rather than having to interact with the various components.
It is possible to write this sort of thing in TCL/TK, but there is a level of complexity - particularly when
a lot of asynchronous actions are being juggled - at which C/C++ become a better match to the problem
than is TCL/TK. I don’t think the design of the system rules out such things, but the documents don’t
seem to consider them.

I believe scripts provide the kind of functionality you are referring to by “sequencing pro-
gram.” Script executors will be used to execute scripts, and they will be linked to the Command Layer
Library of the IOI track. This library will provide a high level interface for all the sequencing require-
ments we believe will be necessary. At this time we hope not to have to use C coded “control tasks”.
This would be possible, however, if we find it is needed,

‘Each principal system will have a PSA that represents its functionality in the OCS’. Can it provide a
more abstract (astronomically meaningful) view of the functionality? I mean, does a spectrograph PSA
represent a system with a grating that can be set to so many degrees, or can it represent a system that can
be set to a central wavelength of so many angstroms? Again, the design doesn’t seem to prevent this, but
it isn’t clear just how it is seen. (Although if all it does is act as a conduit for EPICS attribute/value pairs,
the former seems more likely.)

The PSA presents whatever functionality that the Principal Systems supports (as defined in
its PDF document). Chapter 3 lists some of the reasons why we have an agent for each principal system.
Perhaps the chief use of PSAs is to simplify the remainder of the OCS. From the viewpoint of other
OCSApps, the PSA is the principal system. Its features and peculiarities are collected in one place,
instead of being propagated throughout the OCS.

In the current design the PSA is like a DRAMA translator task. All the smarts for the target system are
handled in that system. With the changes we’ve made to the EPICS CAD interface, controlling/sequenc-
ing system should be easier. We could eventually move the PSA into the principal systems themselves.
Then instruments would receive configurations only

‘Commands that have no real actions can choose to complete immediately meaning that the PS doesn’t
return until the command is complete.’ I must be sounding boring by now, but this is only true if nothing
goes wrong. If the task running the PS is hung, this will jam the system, or at least one thread of it.

There will be a need for a time-out mechanism. This will be considered as part of the detailed
design stage. We had a good discussion on time-outs at the principal systems meeting.



‘Sending an entire configuration sounds good from a design viewpoint..’ I’m not so sure. I keep thinking
of old hardware interfaces that were controlled by setting 16 bits in some parallel register. Some would
let you switch on and off individual bits, which others would only let you send the whole 16 in one go.
Working with the latter was much harder, because parts of the code had to know what other quite unre-
lated parts were doing, just to make sure they didn’t interfere with the bits they were controlling. Maybe
that’s not a good analogy.

If decided to send the entire configuration to the PSA (which we didn’t in the PDR), there
would be no requirement to send a configuration consisting of every possible attribute. The term “entire
configuration” only applies to the idea that the parts are not separated by the CLL before sending them
down to the PSA.

Section 6.0 ‘Only one observer, the blessed observer...’ I love the choice of ‘blessed’ as a term here.
How is it pronounced, and is the ambiguity deliberate? (Or is it only ambiguous in British English?)

The ambiguity wasn’t deliberate, we meant blessed in the “chosen” or “anointed” sense
(monosyllabic pronunciation). Though now that the ambiguity has been pointed out, it seems an espe-
cially good term.

Section 16.7.1 What can be done and what can’t be done. This sounds to me as if interactive classical
observing might be quite limited. How limiting is the statement that ‘sequencing of the principal sys-
tems is done by operator and observer?’ Does this include sequencing the data handling - do you not
only have to tell the CCD to readout but also tell the DHS to record the data? This seems to me to be
connected with the point I raised earlier about levels of abstraction and C/C++ programming. If you
have a hierarchy of layers of abstraction, then one could present the detector and DHS as an entity with
a single command that did an ‘expose, readout and record’ and this layer would be eminently usable
classically. However, if the observers have to do their own sequencing at a more detailed level, then this
is not as good as one gets classically. I feel this is an important question.

What we mean here is that observing would be done in the way it is done now at just about
every observatory. The operator and the observer verbally communicate to “sequence the systems.”

General: I’d like to see a scenario detailing how an observer using the OT pauses an observation. Sec-
tion 7.4 says this can be done, which is good, but figure 3 (the software environment) doesn’t show any
actual observing software below the session manager. As a result, I wasn’t clear from figure 3 that it
could actually be done.

The OT doesn’t interact with any software below the Session Manager. To get a better idea
of the role of the Session Manager and lower level software, see the Planned Observing Support Track
paper. Methods for starting/stopping/pausing etc. observations are shown there. We were rather sparse
on high-level scenarios and will add more including the one you’ve suggested.

Hard to summarise, I’m afraid. An impressive amount of work, obviously carefully thought through,
and I think this can be the basis of a good control system. I think the Gemini team deserve to be congrat-
ulated for that, and the way they have gone to a lot of trouble to address questions such as the ‘repeated
offset button’ scenario. Some rather philosophical reservations, connected mainly with questions of
hierarchy, abstraction, and distribution of distributed data. A concern that the layering of the design may
impose unnecessary limitations on classical observing. And a feeling that in many places the potential
of the design is being obscured by the rather abstract nature of presentation in the PDR documents.



I think some of Keith’s philosophical reservations could be cleared up with some face to face
conversations. Maybe during ADASS (if Keith is coming to Tucson) we can get together.

We didn’t receive Malcolm’s remarks via e-mail, so they have not been included verbatim here. Instead,
the main points that haven’t been addressed are presented. Another problem that is filtered in these
responses is that an older, draft version of the documentation ended up in Malcolm’s hands.

Multi-track approach risks too many tasks being done concurrently. It is important that all post-PDR
effort is devoted to the IOI track until complete, as indicated in the Gantt chart in the WBS.

The multi-track approach also risks several tracks failing to meet requirements, should resources have to
be diverted to other “make or break” systems or if the tracks’ effort are on average underestimated.

Actually, the work is fairly sequential, especially at the outset. Our goal is to create a func-
tional alpha version that will lay the foundation for the other tracks including the Observing Tool track.
Next a version of the Telescope Control Console track (including the Console Track Library that will be
used by all consoles) will be completed to give us a working interactive system from the console level all
the way down to the CAD/CAR interface. We hope to have a test system running by the end of the year.

Do the TCC consoles duplicate functionality of EUIs (engineering user interfaces)? Could the consoles
be used by developers of low level systems?

In some cases this may be true. We’ve addressed this issue in the TCC track paper.

We wish to thank all the reviewers for their insightful comments and questions. We are particularly
appreciate the efforts of those reviewers who are not involved in Gemini on a daily basis. We can see
how jumping into our documentation would be daunting.



This book contains the design documentation for the Gemini Observatory Control system that was presented
and reviewed at the Preliminary Design Review in August, 1995. These documents have been updated based
on the comments of PDR reviewers. Those changes are described in the PDR response document also
included in this documentation package.

There are sections of these documents—primarily the parts of the IOI track related to EPICS communica-
tion— that are not up to date with the current system design. The extensive developer discussions following
the OCS review yielded several significant changes to the OCS-EPICS interface. We (the OCS team)
decided that the PDR documents should reflect the reviewed design at the time of PDR, and consequently
some sections do not match the current state of the design.

We plan on using this document set as the basis for future OCS design documentation and future versions
will match the design. The ICD documents, maintained by the project office, should be used as the definition
of the OCS to EPICS interface.
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To understand the operation and design of the Observatory Control System and the Gemini Control System as a
whole, the OCS has been modeled using an object-oriented design methodology. The Object Modeling Tech-
nique (OMT or the Rumbaugh method) is one of the most popular and frequently used object-oriented modeling
techniques in use today. We have chosen to use the OMT method rather than a structured analysis methodology
for the following reasons.

• The OMT method (as well as other OO design methods) focuses on the interfaces systems and subsystems
present rather than the internal data transformations. Our distributed system also focuses on the various system
interfaces making it easier to model how our system works.

• OMT also includes the important data flow and event flow information of structured analysis.

• The goals of the OCS design and the design of several of the products of the OCS map well to an object-oriented
approach.

The primary references for the OMT method are Rumbaugh’s original book [3] where he describes the method
and a series of articles describing updates to the method also by Rumbaugh [4]. The method is not difficult to
understand assuming some object-oriented background, but the notation takes some time to learn.

The following sections will present a brief summary of the method followed by the design of a single OCS appli-
cation in the next chapter. The design of each OCS development track as a set of OCS application is then pre-
sented with supporting modeling information in subsequent chapters.

API Application Programmer Interface

ARD Action Response Database

CAD Command Action Directive

CCS Configurable Control System

CLL Command Layer Library

EPICS Experimental Physics and Industrial Control System

GCS Gemini Control System

ICD Interface Control Document

ICS Instrument Control System

IOC Input/Output Controller

IOI Interactive Observing Infrastructure

OCS Observatory Control System
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Glossary

ODB Observing Database

OMT Object Modeling Technique

OO Object-oriented

PS Principal System

PSA Principal System Agent

SAD Status Alarm Database

SDD Software Design Description

SDR Software Design Review

SIR Status Information Record

SVC Subject-View-Controller

TBD To Be Determined

TCS Telescope Control System

Attribute — An attribute is a textual description of some part of a Gemini based hardware or software sys-
tem. An attribute has an associated value.

Value — The value is the data associated with a particular attribute.

[1] SPE-C-G0037, Software Design Description, Gemini 8m Telescope Project.

[2] gscg.grp.020.icdbook, Interface Control Document 1a, 1b, 2. Gemini Interface Control Documents, Gem-
ini Controls Group

[3] Object-Oriented Modeling and Design, James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, William Lorensen, Prentice-Hall, 1991.

[4] Journal of Object-Oriented Programming, May 1994, October 1994, November/December 1994, Febru-
ary 1995, March/April 1995, May 1995, James Rumbaugh, Modeling and Design column.

[5] ocs.kkg.014, Observatory Control System Software Requirements Document, Gemini Observatory Control
System Group

[6] ocs.kkg.032, Interactive Observing Infrastructure Preliminary Design, Kim Gillies, Shane Walker, Steve
Wampler, Gemini Observatory Control System Group, 1995.

[7] cdev User’s Guide, Chip Watson, Jie Chen, Danjin Wu, Walt Akers, CEBAF, Version 1.0.1, 7-20-95.
(Available at cebaf ftp site.)

[8] ocs.kkg.036, Preliminary Design for Access Control in the OCS, Gemini Observatory Control System
Group, 1995.

[9] KoalaTalk: An ICE-Based Message Bus, Cedric Beust, The X Resource, Issue 14, O’Reilly Associates.

[10] KoalaTalk Reference Manual, Cedric Beust, Version 1.68, see http://www.inria.fr/koala/beust/
koalatalk_toc.thml

[11] ocs.kkg.033, Telescope Control Console Track Preliminary Design, Kim Gillies, Shane Walker, Steve
Wampler, Gemini Observatory Control System Group, 1995.
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[12] ocs.kkg.038, Planned Observing Support Track Preliminary Design, Kim Gillies, Shane Walker, Steve
Wampler, Gemini Observatory Control System Group, 1995.

First Release — July 30, 1995. Pre-release draft.

PDR Release — August 16, 1995.

Final PDR Release — September 26, 1995.

The OMT development process is to build models during the analysis phase of the project and then continually
refine and enhance the models until the system is implemented. Unlike the phases of a “waterfall” method, the
OMT phases can be re-entered to make changes when required. The following is mostly from [3]. Figure 1 - 1
shows the symbols used in the object diagrams. The object models are reasonably easy to understand and read.
Other kinds of diagrams are discussed later in the document.

In the OMT model, the developer has three viewpoints of the development problem, each capturing important
aspects of the system.

The object model describes the structure of objects in a system — their identity, their relationships to other
objects, their attributes, and their operations. The object model provides the essential framework into which the
dynamic and functional models can be placed. The goal in constructing an object model is to capture those con-
cepts from the real work that are important to an application.

The object model is represented graphically with object diagrams containing object classes. Classes are arranged
into hierarchies sharing common structure and behavior and are associated with other classes. Classes define the
attribute values carried by each object instance and the operations which each object performs or undergoes.

The functional model describes the operations in the system. In particular, it describes how the execution of an
operation affects the values of the objects in the system. The functional model consists of operation descriptions
and occasional object-oriented data flow diagrams. Object-interaction diagrams can be used to show how an
operation works by specifying the messages that flow between objects involved in the operation.

The dynamic model describes those aspects of a system concerned with time and the sequencing of operations —
events that mark changes, sequences of events, and states that define the context for events.

The dynamic model is defined by state diagrams, each of which describes the life history of objects of a particu-
lar class. Other views can also be used to present dynamic model information. These other views are use cases
and scenarios. Scenarios can be viewed in event trace diagrams that show the interactions among a set of objects
in temporal order.

There are fives steps to the OMT software development process.
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Conceptualization. Conceive a problem to be solved and a system approach that solves it.

Analysis. Describe the behavior of the system as a “black-box” by building OMT models of it in user meaning-
ful terms. Focus on a user-centered description. Avoid making design decisions.

System Design. Make the high-level global decisions about the system implementation, including its overall
structure.

Object Design. Elaborate the analysis models by expanding high-level operations into available operations.
When needed make algorithmic and data structure decisions without getting stuck in the details of a particular
language. Make design decisions in a language-independent way. Get a logically correct (if inefficient) imple-
mentation; then transform the design if needed.

Final Object Design. Map the design into a particular language. Coding should be a localized process, as all the
global design decisions should have been made already. Methods can be added for convenience or to enhance
encapsulation.

There are many parts to the OCS and not all the parts are equally well-developed. The earlier development
phases of the OCS were not done in an object-oriented way using OMT, but we feel that overall, the OCS best fits
at the Object Design stage, and the documents that are included for the OCS Preliminary Design Review are
focused on completing the design. The focus of the OCS PDR design is to indicate interactions between the OCS
tracks so that OCS development of the tracks can continue as independently of the other tracks as possible.

This is not all that easy or even possible since there is a logical ordering among the OCS tracks and there is some
information from other work packages (as well as our own) that is not yet available. Our approach is to try and
isolate any unknowns to a single place in the OCS software system and to push on assuming issues will eventu-
ally be resolved or information will become available.

The figures, diagrams, and tables that make up the OCS OMT design information were created by hand using
Frame. Consequently, the information is not as complete or as rigorously verified and checked as a tool-sup-
ported effort.

Although we have auditioned a few OMT design tools, we (Shane Walker and Kim Gillies) feel that so far, none
of them has worked well enough or provided performance or usability to make them worth their cost. (This is
also true of the structured analysis tools we have used.)

We are continuing to review object-oriented design tools and when we find one that works the work in the dia-
grams in this document will be redone with the tool. It is our intention to use the OO design approach an our cho-
sen tool throughout the detailed design of the infrastructure, applications, and tracks.

Our goal with the physical design is to impart information about how the OCS is to be structured and then to
show how the parts of the structure interact with one another to accomplish OCS/Gemini tasks. The following
diagrams and information will be used for each of the OMT views in these documents.

Object Model. Object models will be constructed for important parts of the OCS design. These models will
show important classes or composite objects when the model is describing an instance of a system.
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Functional Model. At this phase of the design textual descriptions of methods will be used to describe a system
operation in the object model. OO data flow diagrams are too difficult without tools support.

Dynamic Model. OO state diagrams are difficult without the help of a tool. We will use scenario diagrams (also
called event trace diagrams) or object interaction diagrams, both derived from use cases, to illustrate the OCS
dynamic view.

We believe that at this time in the overall design of the OCS and the GCS as a whole, this level of modeling is
appropriate and provides the kind of information that is most important for the users of these documents.
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OMT Symbols

Class Name

Class Name

attribute : data_type = init_value

operation (arg_list) : return_type

Superclass

Subclass-1

Class:

Generalization (Inheritance):

Multiplicity of Associations:

Aggregation:

Assembly Class

Part-1-Class Part-2-Class

Class-1
Association Name

role-1 role-2

Class-1 qualifier
Association Name

role-1 role-2

Association:

Qualified Association:

Link Attribute: Association Name

link attribute

Ternary Association:

Association Name

role-1 role-2

role-3

Class-2

Class-2

1+

Subclass-1
Subsystem Name

Subsystem

0 or more

0 or 1

1 or more

Part 1 and Part 2 are “part of” Assembly Class

Subclass-1 “is a” Superclass also
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The OCS is a big project with many parts and levels. Parts of the development of the OCS range from the lowest
level interactions and protocols to the user interfaces for astronomers and the events and interactions of separate
applications within the OCS.

No single model can be used for the entire OCS. Some development tracks will be focused on creating user inter-
faces (Telescope Control Console track, Observing Tool track) and others focus on creating the OCS environ-
ment that allows the applications to cooperatively achieve the acquisition of data during the observing processes.

The input to this stage of the development process is the set of requirements reviewed during the OCS SDR pro-
cess, user consultations since the SDR, and the original Gemini Software SDD [1].

We have broken the physical design of the OCS into two parts. The first part is the creation of the design of a sin-
gle OCS application (what we call an OCSApp). All applications within the OCS are instances of OCSApp and
each instance can use the basic functionality and capabilities that are provided by the OCSApp.

Once the capabilities of a single OCSApp are known, it is possible to model the interactions of multiple OCSApp
instances to provide the overall OCS functionality. It is vitally important to understand the layers of the OCS
design and their focus so that at each layer the details of the previous layers can be ignored. A summary of the
steps follows. Figure 1 - 2 shows a little more detail for each step.

1. Design the basic object structure and functionality of a single OCS application.

2. Specialize the basic OCS application to design the important kinds of applications that appear in the OCS soft-
ware system.

3. Use the OCS applications opaquely to design the kinds of functionality and to demonstrate the interactions that
the OCS software system must have as a whole.

OCS Physical Design Overview

OCS Application Design

OCS Application Specification

OCS Track Designs
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The context diagram shows what is in the OCS and what isn’t by identifying external systems. The context dia-
gram for the OCS, based upon the OCS SDR documents, is shown in the following figure using OMT. The OCS
is a composite object to be refined during the OCS development.

This diagram models the OCS as high-level composite objects and classes. Zero or more Users are interacting
with one or more OCS applications. The OCS applications can interact with an external database and the other
peer principal systems. The other principal systems also interact with the OCS.

The OCS Context Diagram

User

External
Database

OCS
Application

1+

Uses

Interacts with

Principal
System

Interacts with

OCS
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At the highest level, we view the Observatory Control System as a collection of interacting applications. Each
application can interact with other OCS applications as well as the external principal systems and external data-
base. Before the OCS can be modeled as a whole, a single application must be modeled. The resultant applica-
tion model is a building block that is to be used to structure the entire OCS.

The preliminary design focuses on the interfaces between OCS applications and between OCS applications and
other principal systems. Its other important function is to help partition the required work and the scope of the
work between the OCS development tracks.

There are several types of OCS applications in the prototype OCS of the SDD [1]. The types of applications are
described here briefly. Some of the category names are new to the OCS design.

Consoles. A console is an application that presents a “control panel” for one or more systems or subsystems. The
control panel is created using a Graphical User Interface (GUI). The console allows commands to be sent to the
systems or subsystems and can display raw status information from the subystems or it can synthesize and dis-
play higher level status information based upon the raw status information. Consoles are the primary tool for
interactive observing.

Script Executors. Some applications execute scripts to send commands to systems and use status information.
For our purposes, a script is a textual description of operations to be performed by the OCS. Most script execu-
tors do not have an associated GUI, but that is not a requirement.

Service. A service is a software component in the OCS that provides functionality to other clients applications in
the OCS. A service can be provided by a dedicated, stand-alone application or it can be a set of public operations
provided by any OCS application (such as a console). Some services have user interfaces and some do not.

Agent Applications. An agent is a service application that represents another software service or hardware sys-
tem inside the OCS software system. The agents function is to isolate the OCS from the peculiarities of another
system. An agent can provide a translation function that allows OCS applications to communicate with systems
or services outside the OCS in a standard way. In a client-server model, the agent often operates as the server for
a system or subsystem for the OCS clients.

The model for an application in the OCS must be capable of supporting all the types of applications that will be
required for the OCS. It must do this without requiring that all features be present in every instance of the appli-
cation.
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OMT Model of an OCS Application

The model for an OCS application is an OMT subsystem called OCSApp. A subsystem is a high-level subset of
the entire model. (The OCS and OCSApp are subystems in the larger Gemini Control Software system.) The
OCSApp is an organizational entity; it consists of classes and subsystems that work together to provide an archi-
tecture for applications. A subsystem is a collection of modeling elements such as classes or associations. The
following figure shows the high-level OCSApp classes and subsystems.

OCSApp Subsystems and Classes

An instance of OCSApp is an application that creates the objects and associations of OCSApp. This model shows
the entire OCS is made up of one or more OCSApp instances. Zero or more users can interact with one or more
OCSApps. Each OCSApp can communicate with zero or more other OCSApp instances. A single OCSApp can
use the services of up to one external database (set by the GCS system design) or zero or more principal systems.
The principal systems can also use (communicate with might be better) zero or more OCSApps.

OCSApp

Controller

User

AppSubject System Subject

OCS

Subject View

1
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Model Part Descriptions

The classes and associations of the OCSApp are designed to provide a structure for building instances of
OCSApp. This section describes the role of each of the classes in OCSApp.

User interface applications seem as though they should be easy to build, but if they are poorly designed they can
introduce enormous interdependencies that make maintenance difficult or impossible. It is a goal of the OCS to
provide user interfaces that can be modified by the operations staff as simply as possible so it is important to
design all OCSApps from day one to support that goal.

A good design for a user application separates the user interface from the rest of the system by dividing an appli-
cation into a number of loosely coupled parts. The Model-View-Controller framework was developed in the
Smalltalk world to provide an object-oriented framework that separates the user interface and the domain-spe-
cific application code. The architecture of an OCSApp uses this framework but calls it Subject-View-Controller
(SVC) since the term model is used for other things in our papers. This framework is discussed fully in [4]. The
idea is to separate the underlying information of a problem (subject) from the various ways of presenting the
information to the user (the view). The interactive aspect of the problem (the controller) is distinguished from the
relationships between the subject and its views.

The important feature of the architecture is shown by the associations between the three classes.Subjects, at the
lowest level of the application, contain the fundamental application information and the operations used to
manipulate the information. Views are aware of the subjects. The Controller converts user inputs into operations
on views and subjects so controllers are designed last. Because of the one-way dependencies, it should be possi-
ble to build applications one layer at a time. This is why we have chosen an SVC application architecture.

When building an application the AppSubject classes are designed first to include the basic application classes
and operations. This is where the functionality that makes an application unique is found in the OCSApp archi-
tecture. For instance, in the Observing Tool, the fundamental AppSubject data are the Science Programs, Plans,
Observations, and Configuration Components. The OT provides methods that make it possible to manipulate the
OT AppSubjects. The AppSubject may contain many kinds of data and operations.

The subjects for OCS applications often come from outside of an individual OCSApp. For instance, a console
application might wish to display status values for a TCS subsystem. This external subject is provided by the
functionality of the SystemSubject subsystem. The SystemSubject subsystem is common to all OCSApp
instances. It is designed and built to provide standard functionality and subject information for all OCS applica-
tions.

The SystemSubject provides the capabilities common to all OCSApp instances such as access to principal sys-
tems for status and commanding as well as the ability to communicate with other OCSApp instances. Classes in
the SystemSubject standardize the interface to databases. The SystemSubject architecture is described in the
Interactive Observing Infrastructure track documents.

A view is an external format for presenting or visualizing subject information. There may be many ways to view
subject information so a View is a class. Views can be textual or visual. Views in the Observing Tool might show
the Observations in a Science Program as a textual list or as icons or another view would show the attributes that
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describe the Science Program itself. Views need to know about subject data (but not subject operations) but sub-
jects do not know anything about views. A single subject may be mapped to one or more views. Views must be
kept consistent with the changes to subject data.

Generally users control applications by interacting with views. Input events, such as button clicks and keyboard
entries are mapped by the controller into operations that are applied to the views and subjects. The controller is
the surrogate for the user (the actor). For most situations the controller acts and represents the user and his
requests in the operation of the application. A controller can be implemented as a GUI screen (as in a console) or
as a script (a script executor).

What good is the OCSApp model?

• First of all it shows how we intend to structure every OCS application. This approach of having a single architec-
ture for applications and a shared “library” of functionality (the SystemSubject) is common. Examples are X-
Window Xt programs where the Xt library is the SystemSubject. Another example is Adam/Drama where the
“fixed part” is the SystemSubject.

• The OCSApp only indicates application associations but no actual operations so it is only organizational. How-
ever it shows where in an OCSApp specific functionality is placed. This should make maintenance easier for the
future operations folks.

• Using the OCSApp should make it easier to make changes to applications and the SystemSubject since the roles
of the pieces are defined.

• The OCSApp is an abstraction of a real applications. The designs for individual OCSApps can now approached
as the design of AppSubjects, Views, and Controllers rather than entirely new applications.

The next chapter shows the preliminary object diagrams for the SystemSubject subsystem.
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The SystemSubject is a subsystem within the OCSApp subsystem. Its role is to provide access to subject data
when the data is external to the application itself. Examples of external subject data are Science Programs or
principal system status information. This chapter shows what objects and associates we consider to be part of the
SystemSubject; thence, it shows the functionality that will be present in the SystemSubject.

This chapter shows the physical model for the SystemSubject. The instance of the SystemSubject that is to be
created from this model is called the Command Layer Library. Because of the importance of the Command
Layer Library it is more developed than other parts of the design. The document OCS Interactive Observing
Infrastructure Track PD is a companion document to this chapter. That document describes details of the interac-
tions between principal systems which this document assumes. This document is not a detailed design of the
Command Layer Library. Instead it focuses on high-level design issues and interactions with the OCSApp
model.

The model for the SystemSubject has been arrived at by examining the SDD [1], the OCS Software Require-
ments Document [5], and the overall design of the OCS.

The fundamental job of the SystemSubject is to provide an instance of OCSApp with access to subject data that
is outside of its boundaries. More specifically the following items can be extracted from the documents.

• OCSApps need to access status information from other applications and principal systems.

• OCSApps need to command other applications and principal systems to take actions on their behalf.

• OCSApps need to control access to their own operations and data. They also need access to other OCSApps to
allow the first two bullets.

• OCSApps need access to external systems. Currently the only external system is a site database.

This is not as simple as it appears since OCSApps must communicate with a variety of kinds of systems using a
variety of protocols. Quite a bit of work has been done on modeling communications and distributed control (for
instance industry standard CORBA). Within the EPICS community, CEBAF has produced a package called
cdev a library to provide a standard interface to one or more control packages or systems [7]. The preliminary
methods for some SystemSubject objects come from this paper.

At this time, plans for the OCS are to use an available package or product that meets some or all the functional
requirements of the OCS project as modeled in this chapter. That package is not known at this time.

The SystemSubject must also provide other functions that are required and that should be shared by all
OCSApps.

• All instances of OCSApp must be able to log messages using the DHS logging system or a disk file.
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Figure 3 - 1 and Figure 3 - 2 shows the preliminary object model for the SystemSubject. The first figure shows
the low-level portion of the SystemSubject that is responsible for communications with the parts of the GCS. The
second figure shows the high-level objects that are visible to the OCSApp developers.

The SystemSubject Communications Subsystem is designed to present a uniform interface (set of methods) for
all the different communication methods and protocols that might be used in the system. The communications
subsystem common functionality is modeled upon the message bus concept used in Sun’s Tooltalk or KoalaTalk
([9], [10]). The EPICS system uses a message-bus idea to distribute updates (monitors). Having a common mes-
sage paradigm in the OCS and the real-time systems seems like a good thing. First some definitions of two fun-
damental classes.

Name. A name is a token for some system, subsystem, or device that is located somewhere in the GCS software
world.

Service. A service is a communications service that is used to communicate with something associated with
name. This might be a specific protocol or message system unique to the server of “name”.

Figure 3 - 1 shows that a name is associated with at most one Service. Service is an abstract class that describes
the generic interface for all services. It is abstract because there must be subclasses of it for each of the kinds of
systems where names can reside.

The ServiceManager is a singleton class; it is a collection of Service instances. Its function is to locate, load and
generally keep track of services. To do this it uses a ServiceNameMap, which maps names to service names, and
the ServiceMap, which maps service names to Service instances. The figure shows five instances of Service,
one for each of the communications methods that are currently known to exist.

Note that instances of Service are loadable by the ServiceManager. An OCSApp will only attach to the commu-
nications services that it needs for its work. The following are the known services. Service also contains the
methods which instances must override to provide the “generic” interface.

EpicsService. This service provides a thin layer over “raw” EPICS Channel Access. Raw is added to differenti-
ate this from the more elaborate CAD protocol. It would be used for status and alarm monitoring.

CADService. The CADService is part of the communication link to the EPICS/Cad-based principal systems.
Because of the need to control access to the principal systems, the CAD communication is implemented partially
in the CADService and partially as an agent process.

ExtDBService. This will encapsulate any special protocol that might be required to communicate with the exter-
nal database.

SDRFService. This protocol may be required to allow OCSApp to communicate with the Synchronous Data
Reduction Facility.

OCSService. This is the message bus service that will be used by OCSApp instances to “talk among them-
selves”.
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The SystemSubject Communications Subsystem Model

The following tables describe briefly what each of the methods in the SystemSubjectCommunications subsystem
is to do.

Service

serviceName: char *

put (name, message):
putWait(name, message):
putCallback(name, message, f):

Service

load(char * serviceName)
lookUpService(ServiceName):Service

detach(Service s):
flushService(Service s):

Manager

name

Service
Map

getCallback(name, message, f):

lookUp(serviceName):Service

1

Maps To

serviceName: char * = “OCS”

put (name, message):
putWait(name, message):
putCallback(name, message, f):
getCallback(name, message, f):

getServiceName():char *

SDHFService

serviceName: char * = “SDHF”

put (name, message):
putWait(name, message):
putCallback(name, message, f):
getCallback(name, message, f):

serviceName: char *=”ExtDB”

put (name, message):
putWait(name, message):
putCallback(name, message, f):
getCallback(name, message, f):

serviceName: char * = “EPICS”

put (name, message):
putWait(name, message):
putCallback(name, message, f):
getCallback(name, message, f):

EpicsServiceExtDBService

A

Manages

SystemSubjectCommunications

lookUp(name):ServiceName

ServiceName

lookUp(name):serviceName

1

add(serviceName, Service)
remove(serviceName)

Map

OcsService

serviceName: char * = “CAD”

put (name, message):
putWait(name, message):
putCallback(name, message, f):
getCallback(name, message, f):

CADService
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Service Manager Methods

ServiceName Map Methods

Service Map Methods

Service Methods

Method Use

load(char *serviceName):Service s The Service Manager dynamically loads the requested service if it
isn’t already loaded. It makes all the internal connections needed
to allow data to be sent to and received from a “name” using servi-
ceName. The newly loaded Service object is returned.

lookUp(char *name): char *ServiceName The ServiceManager consults the ServiceNameMap to find out
what ServiceName to use to access “name”. That ServiceName
object is then mapped by ServiceManager to an instance of Service
to be used to communicate with the “name”. lookUp returns
NULL if there is no serviceName associated with the “name” is
not loaded.

lookUpService(char *serviceName): Ser-
vice s

The ServiceManager consults the ServiceMap to get access to Ser-
vice instance with “serviceName”. lookUpService returns NULL
if the “serviceName” doesn’t associate with anything.

remove(char *serviceName) The ServiceManager removes any knowledge of “serviceName”
from the SystemSubject.

flush(char *serviceName) Complete any incomplete operations that are using “service-
Name.”.

Method Use

lookUp(char *name); char *serviceName Attempt to map the “name” to a serviceName. Return the service-
Name or Null if no mapping is found.

Method Use

lookUp(char *serviceName): Service s Lookup any Service associated with “serviceName”. Return
NULL if no Service exists.

add(char *serviceName, Service s) Add a mapping between “serviceName” and the Service object s.

remove(char *serviceName): Remove any mapping present for “serviceName”.

Method Use

put(name, message) This method will use the Service to deliver a message associated
with the name “name”. The call will return immediately.

putWait(name, message) This method will use the Service to deliver a message associated
with the name “name”. The call will block waiting until a response
has been received for the message.

putCallback(name, message, f) This method will use the Service to deliver a message associated
with the name “name”. The call will return immediately and will
associate the callback function f with a response to the message.
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The high-level object model presents the methods used to access the high-level functionality of the SystemSub-
ject. Whereas the methods of the previous section are private to the SystemSubject, the methods in these classes
are used by the other classes of an OCSApp instance to access the rest of the GCS.

The SystemSubject Communications subsystem methods are designed to support the presentation in the System-
Subject high-level objects of a uniform interface (set of methods) for all the different communication methods
and protocols that might be used in the system. Figure 3 - 2 shows the classes that make up the high-level Sys-
temSubject. (In the figure the dashed arrows are used to indicate that the direct association between classes is not
shown since the SystemSubjectCommunications subsystem has not been expanded.)

High Level SystemSubject Object Model

getCallback(name, message, f) This method will associate a callback function f with the reception
of a message on the Service with “name”. This is the way systems
mark an interest in receiving commands.

getServiceName(): char *serviceName This method will return the value of the serviceName attribute.

Method Use

Logging

dhsLog(char *form, char *s):

fileLog(file, char * form, char *s):
closeLogFile(file):

Manager

openLogFile(fileName):file

service: dhsService

SystemSubjectCommunications

Status/Alarm
Manager

monitorOn(name, func f):

Command
Manager

putCommand(name, data m):

Access
Manager

checkClient(accessName, name):
addClient(accesName, name):
removeClient(accessName, name):

accessMap: map

monitorOff(name):
postStatus(name, data m):

putWaitCommand(name, data m):
putCommandCallback(name, data m, f):

1 11

getCommandCallback(name, f):

11 1

Uses UsesUses

1

1

SystemSubject

Access Name Access
Map

lookUp(name):AccessList

1

add(name, accessName)
remove(name, accessName)

getData(name, data& m):
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There are four parts of the high-level SystemSubject model. Each is related to a primary function of the Com-
mand Layer Library, which is what the instance of the SystemSubject is called in the IOI track.

Status/Alarm Manager. Status and alarms are presented at the highest level through a “monitor” approach.
Every system “name” must provide its status and alarms asynchronously when a status item changes or an alarm
state occurs. Clients of status and alarms do not poll. The source systems must post their status when they have
information that others need in a timely fashion.

The Status/Alarm Manager provides the methods for monitoring status and posting status.

Command Manager. OCSApp instances can send commands or receive commands. The CommandManager
provides the ways to send a command and one way to respond to commands.

Logging Manager. The SystemSubject must support logging to the DHS and to a local file. These functions are
handled by the Logging Manager.

Access Name. Every message that flows in the OCS will have an associated AccessName that describes the iden-
tity of the sender of the message. Message objects and the association between Messages and Access Names are
not shown in the object diagrams at this phase of the design.

Access Manager. Every OCSApp can control access to its commands. This function is handled by the Access-
Manager. The Access Manager tests and manages the relationships between “names” and AccessNames.

Access Map. This object used by the Access Manager provides the association of AccessNames with “names”.
This is the data store used by the Access Manager.

Each OCSApp SystemSubject has a single instance of CommandManager, Status/Alarm Manager, Access
Manager, and Logging Manager. All these classes depend upon and use the SystemSubjectCommunications
subsystem described in the previous sections.

The interactions between the SystemSubject and the SystemSubjectCommunications subsystem occur through
the use of a “name”. When a system is monitored or a command is attempted, the appropriate Service instance is
loaded by the ServiceManager.

The following tables describe briefly what each of the methods in the high-level classes is to do.

Status/Alarm Manager Methods

Method Use

monitorOn(name, f) This method indicates that the function f should be called when-
ever status or alarm information arrives which is associated with
name “name”. Only one callback can be associated with a “name”.

monitorOff(name) This method removes any monitor callback associated with name
“name”.

postStatus(name, data m) As a producer of status or alarms, an OCSApp uses this method to
post status or alarms to the system. The information is associated
with name “name”.

getData(name, data &m) This method is used by an OCSApp to ask for any data associated
with name “name”. Although.OCSApp instances must keep clients
updated with the latest status/alarms values, sometimes it is also
useful to fetch them.
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Command Manager Methods

Logging Manager Methods

Access Manager Methods

Access Map Methods (a private class)

Method Use

putCommand(name, data m): boolean This method will cause a command containing data m and associ-
ated with name “name” to be sent from the OCSApp instance. The
method will return immediately indicating whether the command
was sent properly. Any returned reply is thrown away.

putWaitCommand(name, data m) This method issues a command like putCommand, but this method
blocks until the actions associated with the command are com-
pleted. It returns any reply received.

putCommandCallback(name, data m, f) This method sends a command like putCommand, but in this case
the method returns immediately and when the actions associated
with the command is complete, the function f is called in the
source OCSApp with any reply.

getCommandCallback(name, f) This method is used by an OCSApp to associate a name with a
function that will be called whenever a command arrives at the
OCSApp that is directed towards “name”.

Method Use

dhsLog(char *form, varargs args) This method is used to write a log message to the DHS log service.
The format is like Unix “printf”.

openLogFile(char *fileName): file This method supports the local logging facility. This method opens
a log file and appends future log messages.

fileLog(file f, char *form, varargs args) This method will log messages to file f, which has been previously
opened with openLogFile

closeLogFile(file f) This method with close a log file.

Method Use

checkClient(accessName): boolean An OCSApp as a server of functionality uses this method to test
whether or not an accessName is currently allowed to access a
“name.”

addClient(accessName, name) This method is used to add a specific accessName to the access list
associated with “name”.

removeClient(accessName, name) This method will remove the “accessName” from the access list
associated with “name”.

Method Use

lookUp(name): AccessList This method will return the access list of AccessNames that have
been previously associated with “name”.
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The object interaction diagram is used to show control and operational behavior of an object system by showing
the sequence of messages that implements an operation. It only includes the objects relevant to an operation. It
shows objects that exist before the operation and ones that are created during the operation. Pre-existing objects
and links are shown with solid lines and newly created objects and links are shown with a fill pattern and dashed
lines. The control flow follows data links, so an object diagram contains all the paths that control can follow.
Transient links that are links only during the operation are drawn in dotted lines. A message from one object to
another is indicated by a label consisting of a text string with an arrow showing the message flow direction; the
label is drawn next to the link that is used to send the message. The label contains the following elements (some
are optional):

Sequence number. - the numbers show the nested calling sequence in “Dewey Decimal” notation (2.1.4). We
don’t have any examples that are nested.

An iteration indicator. This is an *, optionally followed by an interaction expression in parentheses (such as
(i=1...n).

A return value. A name followed by an := assignment sign. The names used as return values can be used in
other messages.

Message name. The message name or method name is used. The class isn’t needed since it is clear from the dia-
gram which object the message is going to.

Argument list. The argument list contains values or names representing values.

The basic dynamic operation of the SystemSubject command subsystem can be shown with an object interaction
diagram. The first case (Figure 3 - 3) shows how a command is sent to a system when the service is already avail-
able.

add(name, accessName) This method will add accessName to the list associated with
“name”.

remove(name, accessName) This method will remove “accessName” from the access list asso-
ciated with “name”.

Method Use
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Sending a Command to a “filter” mapped to an already loaded service.

The AppSubject of an OCSApp puts a command to a “filter” name. The instance of the SystemSubject, the Com-
mand Layer Library, looks up “filter” in the ServiceName map, finds it and returns the Service to the Command
Manager. The Command Manager then uses the returned Service, the CADService, to put the message. The
CADService translates the request into EPICS-specific calls, in this case ca_put.

The case in Figure 3 - 4 is a little more complicated. In this case, a message is being sent from one OCSApp to
something name “OT”. The Command Layer Library attempts to map the name to a Service and fails requiring
that the library be loaded.

ServiceManager

ServiceName Map

CADService OcsService

Command
Manager

AppSubject

1: putCommand(“filter”, data)

2: service := lookUp(“filter”)

3: sname := lookUp(“filter”)

5: put(“filter”, message)

EPICS

6: ca_put(“filter”, value)

Service Map

4: service := lookUp(sname)

SystemSubjectCommunications

Command Layer Library
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Sending a Command to a name “OT” when the service isn’t loaded.

The initial lookup at step 4 fails and returns NULL. The Command Manager looks up the Service associated with
“OT”, finds one, and loads it. The newly created OcsService is shown in a grey pattern to indicate it is loaded
during the execution of the object interaction diagram scenario. Once the OcsService is loaded, it is added to the
ServiceName map and the Service is returned. The message then goes out as in the previous example, this time
being translated into the OCS Message System in the OCSService.

This chapter has shown how the Command Layer Library, the instance of the SystemSubject the OCS group will
create, will be structured and how some of its functionality will operate. The creation of the SystemSubject is the
job of the Interactive Observing Infrastructure Track. More information on the IOI track design and the design of
the “CADService” are given there.

The next level of OCS design is the creation of individual applications using the design for OCSApp and the
functionality of the SystemSubject. The next chapter will show a few examples of typical OCSApp instances.

ServiceManager

ServiceName Map

OcsService

Command
Manager

AppSubject

1: putCommand(“OT”, data)

2: service := lookUp(“OT”)

3: sname := lookUp(“OT”)

9: put(“OT”, message)

OCSApp

10: ocs_put(“OT”, value) Service Map

4: service := lookUp(sname) =”NULL”

OT

5: service:= load(lookUpService(“OT”))

8: add(“OT”, service)

6: create(OcsService)

SystemSubjectCommunications

Command Layer Library

7: (load “OT” service)
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The OCS is made up of several OCSApp instances. The functionality required by every OCSApp is encapsulated
in the SystemSubject. The single instance of SystemSubject is the Command Layer Library that is to be created
during the Interactive Observing Infrastructure track and supplemented during the Telescope Console Control
track.

Chapter 2 described the overall model for OCSApp and the motivation for having a single application model.
This chapter will examine some of the common types of applications in the OCS and show how they relate to the
OCSApp model.

OCSApp is a subsystem, not a class. A subsystem is just a name for a group of classes and associations; there-
fore, it is not really fair to speak of instances of OCSApp. At runtime, an OCSApp is a composite object, which
is made up of the many objects that are included in the Controller, View, and AppSubject subsystems. Most of
the time the distinction is not important and OCSApp instance is used.

Figure 2 - 1 is shown again in Figure 4 - 1. Chapter 3 discussed the design for the SystemSubject. The associa-
tions from the SystemSubject are now known to be those associated with the Service instances a particular
OCSApp uses. Building an OCS application consists of designing and adding the following subsystems when
they are appropriate.

• AppSubjects

The AppSubject contains the classes that make an application unique. This includes any objects and methods or
algorithms that make the AppSubject data useful for the layers of the application above the AppSubject.

• Views

The views present the AppSubject data for the application. There may be many ways to view subject informa-
tion. Views can be textual or visual. Views must be kept consistent with the changes to subject data.

• Controllers

Generally users control applications by interacting with views. The controller is the surrogate for the user (the
actor). For most situations the controller acts and represents the user and his requests in the operation of the
application. A controller can be implemented as a GUI screen (as in a console) or as a script (a script executor).

The next sections show what parts are present in some OCS application types.
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OCSApp Subsystems and Classes

This section will examine the design of a typical single system console. The design is very high-level. The actual
design of the consoles is part of future OCS development tracks.

A prototype console from the SDD that is to be used for controlling the primary mirror air bag is shown Figure 4
- 2. The screen contains a number of GUI widgets including a strip chart widget for displaying values in time, a
two position button for turning tracking on and off, and editable text entries for setting some parameter values.
The drag-and-drop box and the cancel and accept buttons are ignored here because they don’t add any new prob-
lems to the design of an application. One case of each of the different kinds of items is modeled here. (Shown
with dashed boxes.)

A console has all the parts of an OCSApp: an AppSubject, Views, and a Controller.

OCSApp

Controller

User

AppSubject System Subject

OCS

Subject View

1

Principal
System

Uses

External
Database

1+

Interacts with

1+

Uses



OCSApp Instances
OCS Application Console Instances

An example OCS console

The boxed items in Figure 4 - 2 point out the console subject data including: the actual air bag pressure, the target
air bag pressure, and the track altitude control state. Some of the data is status (actual pressure, current track con-
trol state) and some is related to controlling the airbag (target values).

The status values from the TCS air bag subsystem are made available to the console through the functionality of
the Command Layer Library.

Within the SVC design model, a widget can be viewed as a “black box” that provides a view and sometimes it
also acts as a controller by generating input events (when a button is pushed). Status or read-only widgets provide
a view, but widgets like the Target air pressure widget and the Track Altitude button include both a view and a
controller to interact with the view.

There are no views other than widget views in this example console. Other applications might draw a figure (for
instance, the graphical representation of the shape of the primary) or present the subject data in a way not sup-
ported directly by a primitive widget type.

Primary Support: Air Bag Control

Target:

0.494

on/off
Track

Actual
Pressure

Time

Target
Pressure

Time

Error

Time

Predicated

Time

Image
Error
Budget

Actual:

0.495

Altitude:
Zenith 0.5 Altitude 0.20Set Point: Slope:

cancel accept

Quality
Correlation
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The surrogate for the user in the OCSApp model is the Controller. In this application the only controllers are the
two control widgets on the screen. The user enters text in the Target pressure box or pushes the Track Altitude
button and the widget generates events that operate through callbacks on the AppSubject and Views. More elab-
orate applications may have controllers other than widgets.

A simple object model for the Air Bag console and the boxed widgets discussed is shown in Figure 4 - 3.

Air Bag Console Object Model

The widgets comprise the Controller and Views for the application (shown in the shaded area at the top of the fig-
ure). The AppSubjects, in the next lower shaded box, include two objects called AirBag Tracking and Pressure
Manager. These objects would be subclassed from some class of generic Subjects (they have the same methods)
that have the job of interfacing GUI widgets to the lower-level functionality of the Command Layer Library. The

Strip Chart Widget

set(float *value)

Track on/off
Control Widget

set(int onoff)

Target Pressure
Text Widget

set(float *value)

Actual Pressure
Text Widget

set(float *value)

setPushFunc(f) setReturnFunc(f)

Actual Pressure

Command Layer Library

set(char *value)

actual : char *

get(): char *
addMonitor(func f)

AirBag
Tracking

set(char *value)

actual : char *

getActual(): char *
addMonitor(func f)

Pressure
Manager
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creation of these kinds of AppSubject classes is the role of the Telescope Control Console library, a product of
the Telescope Console Track. (See [11].)

The lowest level in the object diagram shows the Command Layer Library where the SystemSubject data that
originates in the TCS principal system is located. The functionality in the Command Layer Library is used to
update the AppSubjects which in turn update the GUI items.

A few object interaction diagrams will show the important interactions among the components of a console. The
example of Figure 4 - 4 shows how an EPICS record update for the BagPressure flows up through the console.

TCS Updates the “BagPressure” SIR Record

EPICS

Target Pressure
Text Widget

Actual Pressure
Text Widget

Command Layer Library

Pressure
Manager

1:monitor_callback(“BagPressure”, data)

2:PressureFunc(“BagPressure”, data)

3:ActualTextFunc(data)

4:StripFunc( data)

Strip Chart Widget
Actual Pressure
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The EPICS monitor features causes a monitor callback for the BagPressure which the Command Layer Library
responds to by calling the function the Pressure Manager has registered with the BagPressure name. The Pressure
Manager then updates all the widgets that have registered a function for actual pressure updates.

Setting the BagPressure from the Text Widget

Figure 4 - 5 shows the methods called when the user types a new value for the bag pressure in the text input wid-
get and then clicks the apply button. The “return function” for the text widget is called which calls the “set”
method of the Pressure Manager. The Pressure Manager then uses the putCommand method of the Command
Layer Library which finds the service associated with BagPressure. The request is then mapped to the EPICS
ca_put low-level command.

EPICS

Target Pressure
Text Widget

Actual Pressure
Text Widget

Command Layer Library

Pressure
Manager

1:ca_put(“BagPressureC”, data)

2:putCommand(“BagPressure”, data)

1:set(data)

Strip Chart Widget
Actual Pressure
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A script executor is an important application within the OCS. Its function is to take text input from the user or a
file and translate the commands or file contents into low-level system-specific commands. Further work on the
Object Model for this application type is found in the Planned Observing Support track documentation [12]. This
section just gives an overview of how this application is mapped to the OCSApp object model.

Subjects. With this application there is no application-specific data; all the data is associated with the System-
Subject. There are objects that accept commands and map them to names for the SystemSubject. Functionality
for command completion in the scripting language is required.

Views. There are probably no views for the Script Executor.

Controller. The controller for the Script Executor is the part of the program that accepts lines of text from the
user or prints output if needed when the application is used as a shell application.

Agent applications appear in the OCS to isolate the OCS from particular protocols used in external systems.
These instances of OCSApp are demons that are started up once and run throughout the observing session (or
maybe always). They generally have no user interface (no controller) and display no subject data (no views).

Their only functionality appears in their Subjects. They receive one kind of message and translate it into com-
mands for another.
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The OCS software system is made up of many OCSApp instances. Previous chapters have described how a sin-
gle OCSApp is structured and how it becomes reality as an instance of OCSApp functioning upon the capabili-
ties of the SystemSubject. The task of designing a new application is now encapsulated inside the OCSApp and
its interactions methods with the outside world are known. Once the abstraction of an OCSApp is understood, the
details of individual applications can be ignored and the OCS can be modeled as a set of communicating
OCSApp instances.

The functionality and dynamic operation of the OCS can be modeled using the OMT object model and object
interaction diagrams and OO-data flow diagrams can be used to understand the behavior of the OCS as a whole.

At this stage of the design the details of the planned observing track and interactive observing are known. These
operations are modeled in the appropriate track documents [12] and are not repeated here (for Steven B.). To
complete the physical model and to demonstrate the large-scale modeling of the OCS, the following object inter-
action diagram shows an Observing Tool instance fetching data from the Observing Database.

Observing Tool Instance Storing Data in the Observing Database

In this example the user of the OT has started an Observing Tool. He requests a list of all the Science Programs
he owns. Once he views his Science Programs, he selects one and opens it. The two messages and their replies
are shown in the object interaction diagram. The use of object interaction diagrams maps well to scenarios and
use cases, which are used throughout the GCS documentation.

Other more complex interactions appear in the OCS Planned Observing Support track documents.

ODBA

1: programs := getProgramList (userName)

2: scienceProgram := getProgram (programName)

OT
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The Interactive Observing Infrastructure (IOI) provides a foundation for the OCS applications. Its function is
roughly analogous to the function of the kernel of a computer operating system in that it provides the lowest level
programmer interface in the OCS. It provides for interactions between OCS applications (instances of OCSApp)
and presents an abstract interface to the system’s resources. All OCS application interactions with principal sys-
tems use the IOI during all planned and interactive observing scenarios. For example, the IOI functionality takes
care of the details of sending commands and monitoring status and system health. Consoles, executors, and
scripts will all use the functionality provided by the IOI.

A design model for much of the IOI track work was presented in [12]. Because the IOI track plays such a key
role in interfacing with other principal systems, it is discussed here in greater detail than the other OCS tracks
and in a more implementation-oriented way than the design model of [12]. In particular, we have focused on the
details for the communications between OCSApp instances and the EPICS-based principal systems. This chapter
contains:

• A discussion of the high-level design of the IOI track,

• An overview of the major software products of the IOI: the Command Layer Library (CLL) and the Principal
System Agent (PSA) application,

• Specific details for the approach the IOI track will use to communicate with CAD-based systems,

• Remaining decisions for the detailed design of the IOI track, and

• A list of the documentation that must accompany the IOI release.

Further details on the IOI software products and protocols may be found in the other chapters.

This document and the others in this book have been altered to reflect changes in the design that were a result of
the Preliminary Design Review and the Principal Systems Meeting held during the week of the OCS Preliminary
Design Review [13].

API Application Programmer Interface

ARD Action Response Database

CAD Command Action Directive

CCS Configurable Control System

CLL Command Layer Library

EPICS Experimental Physics and Industrial Control System

GCS Gemini Control System

ICD Interface Control Document
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ICS Instrument Control System

IOC Input/Output Controller

IOI Interactive Observing Infrastructure

OCS Observatory Control System

ODB Observing Database

PS Principal System

PSA Principal System Agent

SAD Status Alarm Database

SDD Software Design Description

SIR Status Information Record

TBD To Be Determined

TCS Telescope Control System

Additional glossary information is available in [8].

Attribute — An attribute is a textual description of some part of a Gemini based hardware or software sys-
tem. An attribute has an associated value.

Complete Configuration — A complete configuration is a list of attribute/value pairs for one or more
principal systems, and one or more subsystems within the principal systems. The Command Layer Library
splits complete configurations into principal system configurations.

Configuration Part — A configuration part is a set of attributes and values that refer to a single system
capability, for example a filter wheel motion.

OCSApp — A term used to indicate an instance of the OCSApp subsystem defined in the physical design of
the OCS [12]. All applications in the OCS software system are OCSApp instances.

Principal System — At the highest level in the GCS software decomposition, the software system is
divided into four kinds of software systems called principal systems. The four types are called: the Data
Handling System, the Observatory Control System, the Telescope Control System, and the Instrument Con-
trol System. There may be up to four concurrently executing Instrument Control Systems.

Principal System Configuration — A principal system configuration is a list of attribute/value pairs for
a single principal system. It is composed of one or more configuration parts.

Value — A value is the data associated with a particular attribute.
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From the OCS Software Design Review, the following decision must be made as part of the IOI detailed design
step:

OCS Communication Infrastructure. There will be many processes running concurrently in the OCS that must
exchange information (e.g., consoles and the Principal System Agent discussed later in this document). A study
must be done to decide upon the infrastructure that will be used to accomplish this.

The Software Design Description [1], describes the Gemini Control System software. The interface between
principal systems is discussed in detail in documents [6] and [7]. This document assumes familiarity with the
software design and terms defined in the design document and interface documents. Familiarity with the discus-
sion of the IOI track in [12] is also assumed.

The following factors influence the design of the IOI:

• Since the IOI handles all interactions with principal systems and within the OCS, it must be simple and fast.

• The IOI must be designed to work with EPICS (or EPICS-like) principal systems.

• The IOI must provide a convenient command interface to its OCS clients. Both synchronous (waiting) and asyn-
chronous (non-waiting) command options are needed.

• The IOI must support monitoring both the actions and status of the systems being controlled.
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The following subsection introduces some terminology that is used throughout the IOI design. The remainder of
the section covers the primary products of the IOI and a summary view of the dataflow in the IOI.

Every OCS application is a client of the IOI, since the functionality of the IOI track is used by OCS applications
to “talk amongst themselves.” (In fact, the Command Layer Library discussed below is the implementation of the
SystemSubject subsystem in [12].) In this document however, we are primarily interested in the communication
infrastructure required for OCS applications to command other principal systems.

Clients of the IOI that communicate with other principal systems are consoles, script executors, and shell tools.
Each must send system-independent sequence commands (SC) to the principal systems. A sequence command
consists of an opcode with an optional argument. The argument can be a configuration or a simple string. A con-
figuration can be viewed in our system as a set of system dependent commands in the form of attributes and val-
ues. A complete configuration consists of configurations for more than one principal system. A principal system
configuration is the portion of a complete configuration which goes to one particular principal system. A config-
uration part is a group of attributes that are associated with a single system capability (such as a filter wheel
motion). A configuration part is called a command when it can be mapped to a principal system command. Note
that a configuration can have just one part so it is proper to refer to a configuration part as a configuration. How-
ever, the terms are not interchangeable; it is not true that a configuration is always a configuration part.

The sequence commands are very high-level and global, meaning that the execution of the command influences
the operation of the entire principal system. A principal system (PS) can execute at most one instance of a global
command at a time and it is difficult to imagine scenarios where two sequence commands would be executed
simultaneously in the same principal system. The one exception is config(apply). This command causes the tar-
get principal system to match the configuration.

Sequence commands are covered in greater detail in [10].

The Command Layer Library supports a flexible, open architecture for communicating with the software systems
of the GCS. The CLL and its Services are the primary software products of the IOI. In addition, the IOI track
uses Principal System Agent processes to provide access control and to serialize communications from the ser-
vices to the principal systems. The products are introduced below.

All communication from the OCS to other principal systems and communication between OCS applications is
handled by a software library called the Command Layer Library (CLL). The CLL is the implementation of the
SystemSubject subsystem in the physical model. Each software entity in the OCS that must communicate with
another principal system is linked with the CLL. Again, in this document we are stressing communication with
other principal systems.

An important job of the CLL is to abstract the details of updating status and sending sequence commands and
monitoring their completion. It must provide its client with the option of waiting for a sequence command to fin-
ish before continuing. In the case of interactive observing, command completion will be reflected on the console,
and the application will probably not need to wait until all the actions it initiated have finished (see section
5.2.4.2 “Console Interactive Graphical Control Semantics” in [1]). However, the functionality to wait for a com-
mand to complete will be required for executors and scripts and will remain an option for console commands as
well.

The CLL delivers sequence commands (e.g., config(observe), config(apply)) bound for principal systems other
than the OCS through processes called Principal System Agents (PSAs) (see below). In the case of con-
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fig(apply), the CLL is given a complete configuration consisting of attribute/value pairs for one or more principal
systems. The CLL splits this configuration into one or more principal system configurations and sends them as
the arguments to separate sequence commands to the appropriate PSAs using the OCS Message System (see
Figure 1 - 1 on page 1 - 8).

If a sequence command causes actions and the application must wait for completion of the actions, the PSA mon-
itors the actions (using its own CLL) for error/completion/interruption updates and returns this information to the
waiting application. Completion functionality is required in the OCS, but is not directly supported by EPICS.
When the command completes or is interrupted by another command, this information is returned asynchro-
nously to the PSA and then client through the EPICS Command Action Response (CAR) monitoring protocol
(see Chapter 5).

There are some less important functions within the CLL including access control and logging. More details on
this library can be found in Chapter 2.

Each principal system other than the OCS will have one principal system agent (PSA) that represents its func-
tionality in the OCS. PSAs are not used for intra-OCS communication. Their chief purpose is to isolate the
details of communicating with a foreign system in one place. Since the PSA is an OCSApp too, this simplifies
the modelling of the remainder of the OCS since all principal systems appear as OCSApps.

As an OCSApp, the PSA also includes the CLL. All communication from an OCSApp to a principal system
passes from the application to the principal system’s agent process. The PSA first evaluates a request to deter-
mine if the caller has adequate permissions to control its principal system. If the application does not have per-
mission, the configuration is rejected immediately and the client is alerted of the error.

In the case of config(apply), the PSA processes the principal system configuration argument one part at a time.
The PSA maps the attribute names to the format expected by its principal system and presets the configuration
part. For EPICS-based principal systems, this means that attribute names are translated into the ARG fields of the
appropriate command application directive (CAD) record(s). When the PSA sets the preset directive, it causes
the CAD to process and validate the arguments - no other activities happen at this time.

A principal system may either accept or reject a new command when it is preset. When a part is rejected by the
PS, no more parts of the configuration are processed and a reject message is returned to the client. If all of the
parts in a configuration are successfully preset, the PSA applies the configuration using config(apply). At that
time, the PS evaluates the configuration in its entirety for any inconsistencies or problems and either accepts or
rejects the entire configuration. In either case, an accept/reject response is returned to the client CLL to complete
the synchronous command request. This message is called the agent response.

After accepting a config(apply), the PS then takes whatever actions are needed to match the configuration. The
PS updates the command application response (CAR) records associated with the parts as they progress. The
CAR records reside in the Action Response Database (ARD) and are used to determine the current state (e.g.,
IDLE, BUSY, ERROR) of the action being commanded. The PS also keeps the global apply CAR record busy
until the configuration is mapped.

The PSA can also support non-EPICS-based principal systems by simply changing the mapping. A non-EPICS-
based system would communicate with its PSA through some method other than Channel Access. This detail
would be known only to the principal system and its PSA.
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The Action Response Database (ARD) and Status Alarm Database (SAD) comprise the EPICS part of the OCS
Observing Database. The ARD provides information on any ongoing actions associated with a commanded
entity, for example whether it is IDLE or BUSY. The CAR record for an entity also contains the identification of
the client that last controlled it. Higher OCS software layers use this information to ensure that actions are not
interrupted. The SAD provides current status values for all attributes using status information records (SIR). The
principal system keeps the ARD and SAD up to date using channel access as the command is being executed.
The CLL includes the ability to monitor this information to keep clients up-to-date.

The first section below illustrates how the CLL splits a complete configuration into one or more principal system
configurations. The next section places the IOI in the context of the greater Gemini Control System and the final
section further details the duties of the CLL and PSA when commanding a principal system.

The config(apply) command must be accompanied by a configuration argument. The Command Layer Library
splits the complete configuration into principal system configurations and sends each to the principal system’s
Principal System Agent.

Sequence Commands, Configurations, and System-dependent Commands

These points are illustrated in Figure 1 - 1. The config(apply) sequence command handed to a CLL contains two
parts for the TCS, and one part for an ICS. The configuration is split into two principal system configurations and
each is sent separately to the appropriate PSA. Each configuration part argument (TCS.partA, TCS.partB, and
ICS.partA) is a separate system-dependent command. In the case of TCS.partA, the command is “abort”. This
abort applies to TCS.partA only, not to the entire TCS.

Each configuration part is viewed as a system-dependent command. Accordingly, it has an opcode attribute that
can take one of the values abort, preset, or stop. These opcodes refer specifically to a single-function command
and should not be confused with the global opcodes of sequence commands.
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Figure 1 - 2 illustrates the flow of data within the parts of the IOI during a sequence command application to
another Principal System. The “Client” in the figure could be a console, an executor, or a shell program. The cli-
ent’s CLL sends the appropriate sequence command (along with configuration part information if necessary) to
the destination PSA using an RPC-like, request/response protocol. The PSA receives the command, evaluates the
caller’s permissions, translates it into a format accepted by its PS, and then applies it. The PS must immediately
accept or reject each command. To complete the request, the PSA returns the result of the application, the agent
response, to the client.

Data flow in the IOI

The principal system has no knowledge of the sender of a command. Once it accepts a command, it simply takes
whatever actions are required recording updates in the ARD and SAD. Each command includes action response
attributes in the ARD that can be monitored by the PSA to determine command completion. This information is
passed back to the client. In the case of a console, changes to the SAD can be monitored by the client and dis-
played. (A console could also monitor the ARD strictly for display purposes, though this data path is not pic-
tured.)

The responsibilities of the principal parts of the IOI track involved in OCS/principal system communication are
detailed further in Figure 1 - 3, which focuses on communication with an EPICS system. See Chapter 2 and
Chapter 3 for more information on the CLL and PSA. For non-EPICS-based principal systems, the details of the
PSA would differ.
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IOI Layer Responsibilities (Commanding an EPICS-based PS)

In the figure, the OCSApp client process and the principal system are not part of the IOI, but have been included
for reference. Again, the client could be a console, an executor, or a shell program.

The OCSService and CADService are parts of the CLL and are discussed in Chapter 2. Briefly, the OCSService
is used for intra-OCS communication, and the CADService is used by a PSA’s CLL to apply CAD records to
EPICS-based principal systems.

The CLL splits configurations according to principal system. The PS configurations are sent to the Principal Sys-
tem Agents for processing. The CLL waits for the configurations to be accepted or rejected before continuing.

The IOI is used by OCS processes to communicate with other principal systems. The interface between the rest
of the GCS and the IOI is provided by the Command Layer Library. As mentioned previously, every process that
must communicate with another principal system is linked with the CLL.

Communication between the IOI and a PS is usually handled via CAD/CAR/SIR records as described in [6].
Some principal systems will reside in the Unix world in which case other means based on the use of the OCS
Message System may be employed (the OCSService). In either case, the Principal System Agent process handles
the direct command application to its principal system.

OCSApp
Client
Process

Principal
System
Agent
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The OCS SDR documents provide the guidelines for software documentation (SR66, SR67, SR68). The IOI
track does not provide end-user applications, so only library and testing documents are needed. The IOI will be
released with the following documentation:

The Interactive Observing Infrastructure Technical Document. This document describes how the IOI works
and will include sections for both the CLL and PSA.

The IOI Command Layer Library Programmer’s Document. This document contains the CLL API and dis-
cusses how the library should be used.

The Interactive Observing Infrastructure Testing Manual. This manual will describe how to use the testing
procedures required for the acceptance tests of the IOI.

The deliverables of the IOI track include the following.

• The Command Layer Library and testing software

• Documentation as listed in this document and the OCS Development Plan
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There are three types of software applications in the OCS that must communicate with the other principal sys-
tems: consoles, script executors (what was called Sequence Executor in previous documents, but are a little more
general), and shell programs that execute some kind of scripting language (i.e. TCL, PVWave language, Java,
Python, etc.). These applications must also be able to communicate among themselves within the OCS.

This document describes the required functionality of the Command Layer Library (CLL) interface which pro-
vides OCS application programs with a single common software communication interface to the multiple com-
munication protocols. A particular focus is on the interactions of the OCS with the EPICS-based principal
systems. The high-level design is discussed in [12]. The CLL is the implementation design for the SystemSubject
subsystem.

The low-level, principal systems interface part of the OCS design has been through many iterations. The follow-
ing goals seem to survive all our discussions of the IOI.

• The IOI should be lightweight—simple, understandable, and quick.

• The IOI should be matched to the functionality provided by the other principal systems, but should add whatever
other functionality is required in the software system.

It is assumed that the majority of the PSs are EPICS-based using CAD records. The IOI is designed to work with
an EPICS or an EPICS-like system (i.e. one that mimics the behavior of an EPICS system.)

The environment of the software described in this document is shown in Chapter 1 along with a high-level view
of the overall design/functionality of the IOI. The IOI track provides a common software interface that enables
one OCSApp to communicate with other OCSApps and with principal systems. OCSApps send and apply sys-
tem-dependent configurations to target applications and principal systems. See Figure 1 - 3 on page 1 - 10 for an
overview of the CLL responsibilities when commanding a principal system.

A software library will be created that provides a software interface to the command and status functionality of
the Gemini Control System for the use of OCSApp instances. This Command Layer Library will be available as
a statically linked or dynamically loaded library that must be included by all software applications within the
OCS that must communicate with any other process in a principal system.

The preliminary design calls for a number of Service libraries that encapsulate the implementation details of par-
ticular communication systems and provide the functionality demanded of the common software interface. The
CLL Services are to be loaded by the CLL on demand so no application must be needlessly bloated with
unneeded communication code.
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All three types of OCS applications will link with the CLL and their application functionality will be built upon
the functionality of the CLL. They will use only the public interface to the CLL API to achieve their functional-
ity. See Chapter 7 for more information on design decisions made during the IOI development.

Including the CLL functionality in an IOI track application will most likely require the use of a threads mecha-
nism to allow monitoring and notification of waiting/completion independently of the main function of an appli-
cation or console. Threads are available in Solaris so this is not a problem on the chosen/specified Gemini
hardware.

The terms “configuration” and “attributes/values” are used here as they are used in the OCS SDD sections [1].
The exact internal form/content of a configuration or attribute is not known at this time, but it is not important to
this paper or the IOI design as a whole.

In the following discussion, a user of the CLL (a program linked or making calls to the CLL) is called a client or
a client of the CLL.

Preliminary specifications/requirements for the CLL are indicated with an RXXX in the left margin of the page.
These requirements will be refined during the detailed design of the IOI track.

Each application in the OCS will be given one or more unique identification strings that are associated with it and
identifies it within the Gemini Control System. This identification string is used with many CLL API calls.

Any application within the OCS will have the capability of accepting commands and publishing status informa-
tion. The application must be able to control what clients have access to its information.

A sequence command consists of an opcode and an optional argument, which may be a simple string label or a
configuration. A configuration can be viewed in our system as an opaque set of system dependent commands in
the form of attributes and values. A complete configuration consists of configurations for more than one principal
system. A Principal System (PS) configuration is the portion of a complete configuration that goes to one partic-
ular principal system. A configuration part is a group of attributes that are associated with a single system capa-
bility (such as a filter wheel motion). A configuration part becomes a command if that part maps to a command in
another application or system.

Note that a configuration can have just one configuration part so it is proper to refer to a configuration part as a
configuration but it is not true that a configuration is a configuration part.
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Note that there will be information in configurations in the form of attributes and values that does not map to
commands in principal systems or OCSApps. Not all configuration parts are commands.

These requirements indicate that the OCS messages will be made up of attribute/value lists.

The OCS software design uses only the action values that are present in the Action Response Database (ARD) to
monitor completion (and other states) of commanded actions in the principal systems.

For EPICS-based action variables, CLL will allow clients to monitor action variables directly to show transitions
on CAR records visually.

It may be desirable to keep the action variables that must be monitored for a part to complete in the Observing
Database. This is to be decided by the IOI developers during the IOI track detailed design.

If a client needs notification of completion of a configuration, the CLL must keep a record of the action variable
in the requested configuration part and some state information so that the client caller can be notified when the
configuration completes.
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Notification of correct completion and modification of actions comes from the ARD and other services, and the
CLL must be available to receive those messages and to notify the operators/users of problems.

The CLL will also provide the application programmer interface to general status and the Status/Alarm Database.

The status values for all EPICS-based principal systems are represented by SIR records in the Status Alarm Data-
base (SAD). OCSApps can also provide status information and the model will be the SIR record.

The CLL will provide a service-independent software interface to the alarm mechanism as presented in the SIR
records of the SAD. The SIR alarm functionality provides the model for alarms for all Services.

The alarm functionality will primarily be used by a single OCS client program that is charged with presenting
alarm information. This client is called the Alarm Manager.

The specifications and requirements for the Alarm Manager program will be determined during the Telescope
Console Track.
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The SystemSubject design calls for a number of Services that can be used by an OCSApp to communicate with
other parts of the software system. The design places some general requirements on the CLL.

Two Services are positively known at this time. A Service that provides access to EPICS systems using Channel
Access and an OCSService that provides an OCSApp with access to other OCSApp instances. The implementa-
tion of the OCSService is not yet known. The following are requirements for any Service.

The EPICSService allows an OCSApp to use “raw” EPICS Channel Access functionality. This service is used
for status and alarms from EPICS-based systems.

The design for command communication between an OCSApp and an EPICS-based principal system calls for an
intermediate process called the Principal System Agent. The agent uses the CADService to communicate with
the principal system. The CADService adds a protocol to the EPICSService. An OCSApp sends a configuration
to a PSA using the OCSService.

A PSA will process the contents of a configuration by sending the parts to its principal system using the CAD
record protocol.



Preliminary Requirements for the Command Layer Library
Other CLL Functionality

Each principal system will have one Principal System Agent (See Chapter 3). There is no other communication
between the Command Layer and the PS agent during the delivery of a part. The following recipe shows the steps
involved in the delivery of a part from the CADService to a Principal System Agent.

1. If the client wishes to wait, the CLL keeps one record of the action variable required to determine when the
requested configuration is completed. For multiple requests, the CLL still keeps just one record of waiting since
completion is determined for all requests when the one action is completed.

2. Optionally, the CLL may consult the Observing Database to determine relevant information required to commu-
nicate with the PSA that is responsible for the configuration part. The information could be cached so that the
ODB is only contacted once.

3. CLL delivers a principal system configuration to a PS Agent using the OCS Message System and awaits accep-
tance or rejection of the configuration. The response is called the agent response.

4. Once the configuration part is accepted or rejected the CLL has no knowledge of the configuration part unless the
client made a request to wait for completion.

The protocol required with this approach for communication between the CLL/PSA/PS will be fine-tuned during
prototyping. The preliminary design of the PSA protocol and action variable protocol is defined in Chapter 4 and
Chapter 5. Here are some issues:

1. We require that the CLL wait for an agent response from the PSA/PS before going on. This requires a request/
response protocol between the CLL/PSA/PS that places a requirement on the OCS Message System for an RPC-
like synchronous capability. This is more than likely required anyway. This approach simplifies the CLL design
since the actions would only be used to indicate conditions after a configuration part has been accepted and
would not overload the “error” action state. Potential race conditions are thus minimized as well.

2. The CAR/PS protocol requires changes to the CAR and CAD records along with a commitment by the principal
system developers to provide the CAR information the protocols require. This requires work from the controls
group office.

The content of logging messages will be determined by the IOI developers during the IOI track.

The SDD describes two commands that can be used by high-level software to learn about the exported status
information of the principal systems. These commands are status(all) and status(one).

Some error handling for the OCS is built upon the EPICS system functionality.
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This document describes the required functionality of the Principal System Agent (PSA). The PSA is a primary
product of the IOI track along with the Command Layer Library and the Services.

The ICD1 document [2] describes a previous iteration of the principal systems interface. In that design there
were two processes in the system for each principal system called Command Servers. The command server in the
principal system received entire configurations from the OCS command server and mapped the configuration
information from the OCS to the proper commands/records in the target principal system.

This design was abandoned because of the possible difficulties with the OCS group developing code that must
run in a principal system developed by another group. There were also changes to the attribute/value layer in the
first ICD1 which were brought about by comments during the SDD design review that allowed the required func-
tionality to exist in the OCS itself.

One of the goals of the OCS design is to keep the details of the other principal systems from spreading through-
out the OCS. Configurations support this concept because they are opaque to most of the OCS components.
Treating the configurations as opaque data provides the maximum amount of encapsulation and modularity. Here
are some benefits to having an agent for each principal system.

• The features and peculiarities of a particular principal system are centered in one OCS process making long-term
maintenance less difficult.

• The PSA places the configuration unpacking and mapping in a single process in the OCS allowing applications
to continue to pass configurations as opaque blocks of data, but places no burden on the other principal systems.

• The PSA makes the other principal systems appear to be instances of OCSApp making modeling of the OCS
simpler.

• A PSA can, if needed, isolate a particular interprocess communication protocol from the OCS.

• The PSA provides a single place in the OCS that can be modified to support visitor instruments.

Each Principal Systems Agent (PSA) is a process which runs on the Configurable Control System machine. Its
functionality replaces the functionality of the command servers of the original ICD1.

The following definitions are from Chapter 1. A sequence command consists of an opcode and an optional argu-
ment, which can be a configuration or a simple string. A configuration can be viewed in our system as a set of
system dependant commands in the form of attributes and values. A complete configuration consists of configu-
rations for more than one principal system. A Principal System (PS) configuration is the portion of a complete
configuration which goes to one particular principal system. A configuration part is a group of attributes that are
associated with a single system capability (such as a filter wheel motion).
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A configuration part is called a command when it can be mapped to a principal system command in a PSA (a
CAD record with an EPICS PS). The environment of the PSA in the IOI and the OCS is shown in Figure 1 - 2 on
page 1 - 9. The responsibilities of the CLL and the PSA are shown in Figure 1 - 3 on page 1 - 10.

The PSA receives Sequence Commands one at a time from applications that link with the Command Layer
Library. The primary function of the PSA is to process a configuration by mapping configuration parts to com-
mands in a principal system and to apply the configuration using the system’s attribute/value interface. On an
EPICS system applying a part is done with a number of Channel Access ca_put calls to the system’s CAD
records.

In the current model of PS communication, the PSA synchronously waits for the acceptance or rejection of each
command as it is preset. It passes acceptance or rejection of a configuration back to the caller CLL before accept-
ing another configuration.

The PSA handles command completion when action variables are associated with commands.

The PSA is the part of the OCS that would be adopted to support new/non-EPICS principal systems (instru-
ments). The PSA would map the functionality/interface of the principal system to that provided/required by the
OCS.

The PSA can also serve as a Command Layer level interface for a Unix-based system. In this situation, a PSA
would be located on a host that serves the Unix-based system. The PSA receives messages using the OCS Mes-
sage System and maps the configuration parts to whatever is required for the Unix-based system. It returns con-
figuration completion information using the OCS Message System.

A limited, simple form of access control is part of the OCS software requirements. Basically, the OCS must pre-
vent the activities and control of owned resources of one observer from interfering with the activities and
resources of another.

The PSA is the principal system server and must be the one OCS process that determines whether a client appli-
cation is allowed to control a principal system. The PSA must evaluate the identity of the caller and determine if
that caller has permission to control the principal system.

The OCS access control mechanism will be based upon keys and Unix-style owner, group, and other permissions
(See [11]). The PSA will examine the key that is passed to it from a CLL as part of a configuration part. If the key
is not acceptable, the command will be rejected before passing it on to other PSA software layers.

Control of the resources is determined by the telescope operator through the Session Manager application inter-
face. The act of awarding resources communicates to the PSA which observers have access to what systems.
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In most Gemini systems, the attribute/value layer is represented by CAD records. With CAD records the PSA
must map attributes to the ARG fields of the CAD record.

In some other kind of principal system, the PSA would map the configuration information to whatever command
system is appropriate for the system. The PSA must evaluate the command using the current principal system
protocol and return the agent response regardless of whether the principal system is EPICS-based or not.
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A principal systems may go down or for some other reason become unavailable. The PSA must react when sys-
tems disconnect. This is probably a problem only at certain times.

This sounds worse than it really is. There can be at most one command ongoing in a PSA at any time.

The PSA must await the acceptance/rejection of each part by the principal system, apply the configuration noting
any errors, and immediately return the result to the caller of the PSA. This request/response would appear as a
remote procedure call to the CLL. At this time there is no reason to assume a synchronous connection will not
provide adequate performance based upon typical EPICS and Unix interprocess communication times and the
probable rather low OCS command rate.

The PSA must have the capability of mapping the configuration part attributes to the functionality of the princi-
pal system the agent represents. In our system, the destination is an EPICS system and the functionality of that
system is provided by a set of EPICS CAD records.

The PSA will receive an APPLY sequence command as an opcode and configuration, which is a a set of
attributes and values. The PSA must find the configuration parts and map each part. The attributes must be
mapped to the fields of a specific CAD record (a part is by definition, the parameters required for a single opera-
tion). An example is now shown for an offset configuration part:

telescope:offset:ra 20
telescope:offset:dec 25
telescope:offset:unit arcsec
telescope:offset:command apply

The PSA must take the offset and map it to an EPICS CAD record. It then maps the fields: ra, dec, unit, action,
command (in this example) to the fields of the offset record. This mapping currently must be kept in the PSA and
is loaded once at initialization time. An example of field mapping is:

telescope:offset:ra tel:offset:A
telescope:offset:dec tel:offset:B
telescope:offset:unit tel:offset:F

The simple mapping described here could be done through simple hash table data structures which use attribute
names as keys.

It is not necessary that the configuration part on the left (offset) map directly to a CAD record of the same name
on the right.
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In Gemini Control System terminology, actions are what happen in an EPICS system when a command is issued.
Actions are the side-effect of issuing commands. Much of the functionality of the OCS and the IOI relies on hav-
ing some way to monitor what and when actions are happening in the other principal systems. This is important
in the Gemini system because our software system must be able to tell when operations are complete in order to
successfully implement planned observing or waiting in scripting languages.

The EPICS system, upon which most of our principal systems are based, provides a wealth of information on the
values or status of hardware devices. However, it provides very little that assists software above EPICS in deter-
mining when activities in an EPICS system are occurring or completing. The traditional EPICS solution of deter-
mining completion based on status values is a poor solution for Gemini because it results in very device-specific
code spread throughout the EPICS and OCS clients resulting in code that is difficult to maintain. That is a big
problem in the Gemini distributed software development environment. While this paper is focused on the imple-
mentation of action variables in EPICS systems, our intent is to use action variables for the same purpose within
the OCS.

The Gemini project solution to this problem is to supplement the EPICS system with a new record that provides
client software with additional information on what parts of an EPICS system are doing. This record, the Com-
mand Action Response or CAR, enables client software to determine when actions in an EPICS system are com-
pleted without monitoring status values and performing device-specific processing of status values. The impact
on the EPICS systems themselves is minimal.

This paper is based on and extends the preliminary work in ICD2 [2] (since updated) and [3]. The approach is to
look at the action variable model, define the meaning of the action variable values and protocol, and show how
principal systems use CARs. A number of IOI scenarios are covered in another chapter of this book (Chapter 6)

Changes the OCS proposes to the CAD/CAR/SIR records are given here. (See “Changes To CAD/CAR Interac-
tions” on page 4 - 31.)

This paper includes changes agreed upon during the Second Principal Systems Meeting [13].

Each controllable part of an EPICS principal system is associated with one or more action variables (in the OCS
Action/Response Database). One implementation of an action variable is an instance of the EPICS Command
Action Response (CAR) record. When a Command Action Directive (CAD) record is applied one possible result
is that some actions execute in the system. Associated with any CAD record is one CAR record that can be mon-
itored by software above the EPICS system to determine when any actions caused by the application of the CAD
record are complete. There is a coupling between CAD and CAR records; actions in a principal system occur as
a result of the application of a CAD.
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The static (unchanging during an observing session) associations between CAD and CAR records are docu-
mented in the Parameter Description Format, which each principal system produces during development.

However, a principal system might also cause its devices to operate on its own, not as a result of a CAD record
application. This is called a self-initiating action. A PS still updates the action variables so that upper layer soft-
ware can monitor that actions are taking place in the principal system. For instance, while tracking a target the
TCS might adjust the primary support structure. The status values for each of the support devices would change
as would the action variable that indicate that the “primary support device” is busy.

The goal of the Action Variable Protocol is to allow the OCS or another system to track the actions of the princi-
pal systems and to give operators the best feedback possible when actions are interrupted or modified by other
sources.

The CAR record is a simple status record. Figure 4 - 1 shows the external CAR interface and Figure 4 - 2 the
internal fields. Both figures are from [7] (normal EPICS fields are not shown).

External interface for CAR records

The Status may be one of a few known values (documented later in this document). The Message provides infor-
mation about the nature of the Status response if necessary.

‘Internal’ Connections for CAR records

The Status In field is set by the internal caller to change the Status of the CAR record.

CAR

Status

Message

CAR

Status In

Message In
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The CAR record has been implemented by the Gemini Project Office and is under their change control. New ver-
sions will need to be written to support the ideas in this paper.

The kind of information that can be obtained from the CAR data is determined by the Action Variable Protocol.
This section describes the possible values for the status field of a CAR record or any other action variable.

Figure 4 - 3 shows a state machine for the Action Response Protocol. The possible states for a CAR record are in
capitalized italics (IDLE, ERROR, PAUSED, MODIFIED, BUSY, ALERTED, UNAVAILABLE). The values an
EPICS database sets in the CAR record to move the machine between states label the arcs (busy:cl_data, done,
pause, alert, error, unavailable). The client data (CL_DATA) of the application that last caused the action to go to
the BUSY state is appended to the current value of the CAR record as in BUSY:cl_data. The OCS CLL CAR
Protocol uses this information to ensure that no other process has interrupted an action before it completes.

The two states inside the shaded box are temporary states that the CAR record enters and spontaneously decays
back to the BUSY state. These temporary states are used to communicate certain conditions to programs moni-
toring the CAR record.

Action Response Protocol

The caller in the following discussion is some internal code written by the principal system developer. This code
is responsible for the implementation of the actions in the principal system. During execution of the actions, it is
the caller’s responsibility to set CAR Status In fields of any associated CAR records with the appropriate values
at the appropriate times (discussed later). The meaning of the CAR states is as follows.

IDLE. No action represented by this variable is underway. Any actions associated with this variable have com-
pleted or were never started.

IDLE:CL_DATA

BUSY:cl_data

MODIFIED:CL_DATAALERTED:CL_DATA

busy* alert

busy:cl_data

PAUSED:CL_DATA

pause

ERROR:CL_DATA
busy:cl_data

* Indicates spontaneous decay into a state

UNAVAILABLE:CL_DATA

error

busy:cl_data

busy*

unavailable
done

done

busy:cl_data

done

error

done
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UNAVAILABLE. Some actions may become unavailable in particular modes of operation. Systems make this
known by setting appropriate CARs to UNAVAILABLE. The only way to leave unavailable is to set a CAR with
done or some alias for done.

CAD records that control actions that can become unavailable should check for this condition before accepting a
command.

BUSY. The actions associated with a variable are occurring. This variable will have the value BUSY:cl_data on
Status as long as the actions associated with this variable continue. Once the caller knows the actions associated
with the variable are complete, the variable must move to IDLE by setting Status In to done.

Whenever a client writes busy it must also write the client data of the client that is causing the action to become
busy. The CAR record saves the client record whenever busy is written. Systems should do not need to write (and
therefore save) cl_data with other state values.

ERROR. The ERROR state indicates that a problem occurred during the execution of an action. The internal
caller sets the Message In before setting Status In to error.

This state should only be used to notify the users that a problem occurred with the execution of the actions them-
selves. It should not be used for the following:

• Improper arguments - These are to be trapped in the CAD records. Only good requests should make it past the
CAD records for execution in the database or principal system code.

• Requests for unsupported capabilities - If a particular action can not be modified or stopped/aborted, the CAD
record must check for this and reject the request. This should not be handled by ERROR.

• Bad status values or out of range conditions - These are to be handled by status or alarms in the SIR records, not
in the CAR.

All these issues should be addressed in the CAD subroutine, not by CAR record updates. When it is impossible
for the system to evaluate these issues in the CAD subroutine, the ERROR state should be used with an appropri-
ate message. This should be used rarely.

The ERROR action is set when a problem occurs with the action itself. For instance, during execution of the
command the software notices that the hardware has become defective. Errors of this kind could also become
evident through health if the system cannot continue or status if the errant action causes out of range values.

PAUSED. The PAUSED state indicates that some actions associated with this variable, which are already under-
way, have been paused by an operator/observer. This implication is that at some later time they will be continued
by setting Status In to busy. Since relatively few operations can be paused once started, “pause” is not one of the
directives supported by every CAD record. If an action can be paused, a special “pause” CAD must be created
for that action. An IOC would not typically pause an action.

PAUSED actions that are aborted become IDLE actions. PAUSED actions can go to the ERROR state causing an
alarm.

MODIFIED. The MODIFIED state is a temporary state entered when an action associated with a variable,
which is already underway, is applied again. This gives systems monitoring this action an indication that some-
thing interacted with an ongoing action (like a DRAMA kick or a repeatedly pushed offset button). From the
MODIFIED state, the CAR record spontaneously decays back to BUSY after firing off all monitors.

Some actions can not be modified once they have started, CAD records controlling these actions should not
accept applies if they are busy and can not be modified. A decision on whether a CAD can accept new applies
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once actions are busy is made by the principal system itself, not the structure of CAD/CAR records or the OCS.
CAD records probably do not exist for self-initiated actions.

The ERROR state should not be used by systems to declare that they can not be modified.

ALERTED. The ALERTED state is a temporary state entered when an ongoing, long action wishes to notify
users with some useful text information. The internal caller sets the Message In field before setting Status In.
(This functionality is similar to the DRAMA trigger.)

This state can only be entered once an action is busy and can’t be used to send messages back to operators that
aren’t associated with ongoing actions.

The following table defines the meaning and use of the CAR states and the possible transitions between states.
The CAR state machine is implemented in the CAR record and it is not the responsibility of the principal system
programmer to keep track of what state his code is in. The design allows PS developers to always do the same
thing when they receive a command request. The CAR record produces the correct information for monitoring
systems based on its state and input.

Setting Status In to a value that is not a defined transition for a particular CAR state does not cause an error. The
CAR record simply ignores the caller’s request and remains in its current state.

To support the Action Variable Protocol a PS system IOC is required to set the CAR records at the proper times.
The design of the CAR protocol is meant to require as little work by the PS developers as possible. Figure 4 - 4
shows a typical CAD-started action that is accepted by the PS and completes successfully.

CAD subroutines are not required to set appropriate CAR records before accepting or rejecting a preset, but they
are required to set the CAR eventually and in the same order that requests are made. Without the cl_data in the
CAR record, this relaxed approach is not possible. Without cl_data the CAR record must be set before the CAD
record finishes processing the PRESET directive.
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State Machine Transition Descriptions.

Start State Final State Entered With Description

IDLE BUSY busy:cl_data The PS CAD accepted a command and sets busy:cl_data just
before starting the requested actions.

UNAVAILABLE unavailable The principal system has determined that the actions associ-
ated with this CAR record cannot be commanded at this
time. Each unavailable action should be set with unavaila-
ble.

UNAVAILABLE IDLE done Once in the UNAVAILABLE state the actions it represents
are no longer available. The PS must set the CAR record
with done before accepting self-initiated or CAD com-
mands.

BUSY IDLE done The CAD-initiated PS actions have completed. The final PS
action is to set the action variables with done.

ERROR error An ongoing busy action has encountered an action-related
problem. It sets Message_In and then Status_In to error.

PAUSED pause A user wishes to pause an ongoing CAD-related action. The
request has been accepted by the responsible CAD record.
The PS pauses the action and sets its action variables with
pause.

MODIFIED* busy:cl_data An apply has been accepted by a CAD record that can mod-
ify an ongoing action. When the PS sets busy:cl_data again,
it causes the CAR to temporarily enter the MODIFIED state,
fire off monitors and return to the BUSY state.

ALERTED* alert The PS can relay information to systems monitoring an
ongoing action by setting Message_In and then alert. The
CAR must be in the BUSY state. Self-initiated actions can
not send alert messages to consoles.

ERROR IDLE done The PS writes a done to a CAR in an ERROR state to put it
in the IDLE state. This is used to clear an error, but the next
request for the action is also sufficient to move the CAR out
of the ERROR state. There is currently no way to clear an
error like this using the CAD record.

BUSY busy:cl_data A PS setting Status_In to busy:cl_data on a CAR in an
ERROR state causes the CAR to return to the BUSY state.
This is what happens when an operator tries to re-execute a
failed action.

PAUSED IDLE done A PAUSED CAR can go directly to IDLE by setting
Status_In to done.

BUSY busy:cl_data A PS notifies users that a PAUSED action is resumed by set-
ting Status_In to busy:cl_data.

ERROR error A currently paused action has encountered an action-related
problem. It sets Message_In and then Status_In to error.

MODIFIED BUSY busy:cl_data Once in the MODIFIED state, a CAR record notifies any
monitoring clients that its action has been modified and
returns to the BUSY state on its own.

ALERTED BUSY busy:cl_data Once in the ALERTED state, a CAR record notifies any
monitoring clients that it has an alert message and returns to
the BUSY state on its own.

*Indicates Spontaneous Decay to BUSY
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Activities that must occur for a CAD-initiated action in an EPICS IOC.

To ensure that a client starting an action can determine that his action has not been modified by some other client
while it is busy, the CAD and CAR design needs some minor changes from the ICD documentation. In this sec-
tion, we detail the changes required by the OCS as well as the changes and new features requested by the UK
partners.

Each application that is potentially going to write to another principal system must have a unique identifier and
this identifier is written to the CAD record as part of a command request. The cl_data identifier will consist of the
client id and some other information. The client identifiers will be managed by the OCS and is opaque to princi-
pal systems. In other words, other principal systems will blindly handle cl_data identifiers as discussed below
without interpreting their value.

Command Source (OCS) Principal

CAD apply
Start
Command

Examine
Command

System
CAR
Record

CAR busy:cl_data BUSY:cl_data

IOC
Begins
Action

Returns
Accept

OCS
PSA
Accepts

accept

IOC
Completes
Action

CAR done IDLE:cl_data

Client
Notes
Completion

Monitor of CAR
triggers on IDLE:cl_data

cl_data

and checks cl_data
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• The CAD record is modified to allow a PSA (or other client) to set data in the CAD record’s cl_data. This
requires a new CAD field.

• UK developers suggest CAD records that handle different numbers of input/output records (1, 5, 8, etc.). Change
names from INPX to A, B, C. Provide inputs as inputs or links.

• Add a Stop directive to complement Abort and remove the Verify directive for a CAD. Developers decide what
Stop and Abort mean for their systems within the broad project definitions.

• Change the name of the apply CAD directive to preset.

• Remove the Pause and Continue directives for CAD. (These will be handled by a separate CAD when needed.

• When a CAD record starts an action (or modifies an action) it writes busy:cl_data to the appropriate CAR record.
This allows the client to ensure that when the action goes to IDLE, no one has interrupted/modified his action.
The IOC is required to eventually write to the appropriate CAR, but it is not required to do it from the CAD sub-
routine. The CAR must be written in the order requests were made to the CAD. This change requires the cl_data
be propagated from the CAD to the CAR.

• The CAD test subroutine must check for at least four things.

-- It must check for appropriate arguments and reject if they are bad.

-- It must determine whether or not it can support the requested directive. For instance, can the action be
stopped?

-- If an action is in progress and a new request is made, the test subroutine must decide whether or not the
actions controlled by the CAD can be modified.

-- If actions can become unavailable, the CAD must check to make sure it’s available.

• If no device actions are required to match a CAD request, the PS must still write BUSY then IDLE to show com-
pletion.

• Add new CAR state and value: UNAVAILABLE.

• CAR record Status In argument is now a string argument.

• The CAR record values are changed to strings with the cl_data appended as in: BUSY:cl_data, MODI-
FIED:cl_data, ALERTED:cl_data, PAUSED:cl_data, IDLE:cl_data.

• Require one CAR record per CAD record.

• The CAR record must be altered to provide the state machine described in this document.

Note: When writing CAR messages other than busy:cl_data (i.e., done, pause, alert, error, unavailable), the
principal system only needs to write the message value, not the cl_data. This means that the IOC is not required
to keep the cl_data around in his system.

Note: Self-initiated actions do not go through the CAD records, but the IOC must still write busy:cl_data with
the cl_data of the IOC. If they do that, other systems can also determine when IOC initiated actions are complete

• Provide a SIR with an float value and a SIR with a string value.

• Remove the FITS keyword and FITS comment items from the SIR.
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Note that without the cl_data information there is not really enough information from the states of the CAR
record to relay much information about who (meaning which process or client) modified an ongoing action. This
is one reason why we need the cl_data. For instance:

• Two consoles each enter a single offset for 10 arcsecs at roughly the same time. The TCS starts one and the offset
action variable goes BUSY. The second offset is executed and the action variable passes through MODIFIED and
returns to BUSY. Both consoles register a modified request and neither really gets what was requested. The first
console will note that the cl_data isn’t its cl_data with the MODIFIED value. The second console should see that
the current cl_data is not his before it starts. Since the second console knows it is modifying an ongoing action it
is reasonable to assume that it knows what it is doing.

• Now one console issues two consecutive offsets with quick pushes to the offset button. The first offset action is
again modified and the console could display it indicating that the second offset was indeed accepted and exe-
cuted, but warning the operator at the conclusion of the action would be misleading.

The OCS removes this ambiguity in the software layers above the attribute/value layer in the CLL by checking
cl_data for changes. See Chapter 5. The goal is to limit the occurrence of these situations with observatory man-
agement and resource management, but notification of problems remains an important issue with which we must
contend.

Another benefit of cl_data is that it tremendously simplifies CAR record monitoring. The cl_data fields provides
a direct association between a command and the actions it causes in a principal system. Without it, there is no
way to determine with certainty when a requested action has begun or completed.

The ERROR state of an action variable can be combined with the use of health and status alarms in the SAD to
help the operator pin down problems quickly. There is some overlap with multiple ways to report problems
(health, SIR alarms, action ERROR). The action ERROR should only be used to report unrecoverable problems
with ongoing actions that keep the action from properly completing.

For instance if a filter wheel belt broke, the health of the instrument would be bad, an alarm might be triggered
showing an out of range filter value, and the action variable could show ERROR with an associated message stat-
ing a belt broke because the action can never complete with a broken belt.

The CAR record has no information or logic for dealing with network disconnection that occurs when an IOC
goes down or becomes unresponsive. The monitoring for this condition must be handled on the client side, not in
the IOC or the record itself. The OCS Command Layer Library and PSA will monitor disconnect alarms in the
OCS. Principal systems other than the OCS commanding principal systems through CAD records must invent
their own disconnect response.
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Commands are sent from processes in the OCS (e.g. sequence executors, consoles, or shell programs) to other
principal systems. In order to properly control these systems, the OCS needs to know when a command com-
pletes or is interrupted prior to completing. While EPICS provides a great deal of information on the current sta-
tus of an action, it does not support monitoring command completion.

To help solve this problem without resorting to examining device-specific status values, the Gemini project has
developed a new record, the Command Action Response or CAR record. The CAR record provides client soft-
ware with additional information on the state of each action. For instance, an OCS client process can monitor an
action’s CAR record to determine whether it is idle or busy.

Though it goes a long way toward a solution, the CAR record alone is not sufficient to obtain accurate command
completion information. It is limited from the point of view of an OCS client in that it only reflects the state of an
action itself, not the state of a specific command. Problems can arise when two or more OCS clients request the
same action, or when an OCS client commands a device that can periodically initiate its own actions. In these
cases, simply waiting until an action is no longer busy does not mean that it completed the last command without
being interrupted.

To solve this problem, we have built a protocol on top of the CAR record to monitor command requests as well as
actions. In this way, commands can be directly associated with the actions they cause in principal systems. How-
ever, this protocol only deals with monitoring the actions caused by a command, not with insuring successful
completion. For example, no warning is issued by this protocol if a command directs a filter wheel to go to posi-
tion 5, but the resulting actions complete leaving the filter wheel at position 4.

This chapter discusses the protocol used in the OCS to obtain accurate command completion information.
Although the protocol will work for arbitrary action variables (whether or not they are implemented as CAR
records), it is discussed solely in terms of the CAD/CAR EPICS environment for simplicity.

In order to implement the monitoring protocol, a small number of constraints must be placed on the behavior of
principal systems. Each requirement listed below is indicated with a CRx in the left margin of the page.

Allowing multiple action response variables per command does not increase functionality, but it does create a
much more complex system. Instead of monitoring a single variable, the command protocol would have to be
equipped to examine a set of variables and combine them.

The protocol relies on monitoring action responses to determine command completion. If the principal system
could decide to sometimes bypass writing to the CAR record, then the protocol could not work.
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Without this requirement, commands could get “lost” in the PS. Should a new command be applied before the
actions for the first one begin, only the second command would cause actions. This stipulation guarantees that
the actions for a command are seen before a new command is accepted.

The PSA is responsible for monitoring commands for completion (using its CLL) and returning this information
to the client process. However, the client itself may also use its CLL to monitor CAR records for display pur-
poses. The CLL service used in the two cases differs. The PSA uses the CADService for the command comple-
tion protocol, and the client uses the simpler EPICSService for displaying CAR record values. See Chapter 2 for
more information on the CLL.

The protocol described here only involves monitoring the completion of individual actions. Of course, the PSA
will also need the ability to monitor an entire principal system configuration for completion. This functionality
can be implemented on top of the single-action monitoring protocol by combining the completion states of the
various actions. Alternatively, the APPLYC CAR record could be used in some cases to monitor the completion
of a set of commands since the APPLY CAD is always set to enact a configuration [10]. This distinction is not
important here since the protocol is the same regardless of how it is used.

An understanding of the Action Variable Protocol, covered in Chapter 4, is crucial to this discussion. As men-
tioned above, the PSA’s CLL is given the central role in determining completion for sequence commands. To
accomplish this, it uses the action variable associated with each command. The major parts of the protocol are
detailed below.

Before a sequence command is sent to a PSA, it is tagged with a unique cl_data value that is formed by append-
ing a sequence number to the client’s id. Each client is given a unique id when it is created, and sequence num-
bers are incremented each time a new command is issued. The cl_data becomes a unique argument to the CAD
record for the action when the command is applied by the PSA.

Since each command is given a unique cl_data value, it is a relatively easy task to trace the actions associated
with the command and hence to determine command completion. This process is best described as a simple state
machine as discussed below.

The CLL CADService monitors the CAR record for each action with which it is concerned. Each action has an
associated Action State Machine (ASM) in the CLL. When the PS updates a CAR, the record enters a new state,
triggering a callback routine in the CLL. The callback routine looks up the current ASM state of the action and
makes a transition based upon the value of the CAR record (see Figure 5 - 1).



CAR Record Monitoring Protocol
Command Protocol Details

Action State Machine

In the figure, the dashed arrows represent the transition that occurs before issuing the command to the PS. Thus
all actions begin in the Start state. The remaining transitions occur as a result of CAR record monitor callbacks
(and so are labeled with CAR record states). The colon in the label separates the CAR record state from the
cl_data field. Where cl_data is “xxx”, it is ignored by the CLL. The transition from Start to Active is labeled with
BUSY:cl_data. This indicates that the move is only made when the PS writes busy:cl_data for the command that
the CLL is monitoring. Thus when in the Active state, the CLL knows that the actions in the PS are associated
with the command that it just issued.

Once in the Active state, an IDLE callback indicates that the command has completed without being interrupted.
Likewise ERROR means the command has ended because something went wrong while it was executing, and
MODIFIED means that another client has interrupted the sequence command with its own actions. In each case,
the ASM remains in one of the command completion states (Done, Error, or Interrupted) until a new command is
issued.

Any CAR record values not specifically mentioned in the ASM transitions cause no change of state (i.e., they can
be viewed as self-loops on each state). For instance, ALERTED, BUSY, and PAUSED actions are ignored once the
command is Active, and every callback is ignored once in a command completion state.

The CLL must provide at least three forms of sequence command execution: asynchronous, asynchronous/join,
and synchronous. In the first case, the client does not care about waiting for command completion. It sends a
command, receives an agent response, and continues with other processing. In some cases though, the client will
want to continue processing after sending a command, and then later wait for it to finish before continuing. This
requires a “join” type capability. In a scripting language, these interactions will be provided for with statements
like waitlater and waitnow as illustrated below:

set waitstate [waitlater $cmd_info]

do something else

waitnow $waitstate

Finally, completely synchronous command execution, where the client blocks until the command completes is
also required:

Interrupted

Start

Error Active

Done
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waitwhile $cmd_info

For the completely asynchronous case, callbacks will still occur and the ASM will change states as appropriate,
but the command completion information that the protocol provides is not used. For either of waitnow or wait-
while, the main thread of the client must block until the command terminates in some fashion. This is accom-
plished by blocking until the ASM for the action enters a command completion state (Done, Error, or
Interrupted).

The protocol is fairly straightforward. The idea is that the completion state of the last command sent by a client is
kept in the ASM for the action until a client tries to initiate new actions. This simple protocol should work well
but a couple of limitations on the information it provides must be noted.

• Whenever a sequence command is sent to a PSA, regardless of whether it is accepted, command
completion information for any previous commands to the same capability is lost.

Put simply, this means that the CLL can only wait on the last accepted command. If three “offset 10” commands
are sent to the TCS, but the third one is rejected, then there is no means for the CLL to wait on the previous two
to complete. Even if the third offset is accepted, and completes successfully, there is no guarantee that an offset
of 30 has been achieved. The second offset could have been interrupted by another client, in which case the final
offset from the initial position could be anything, yet the CLL sees a “Done”, not “Interrupted” completion state.

• The protocol only provides accurate command completion information, it does not deal with successful
command completion.

This stipulation was mentioned at the outset. If a device claims to have completed a command, the protocol does
not check SIR records against command parameters to check for successful completion.

• Command completion information refers only to sequence commands, not to the entities being com-
manded. Before retrieving command completion information with a “wait” statement, the commanded
capability may be commanded by another client.

The commanded device does not pause or block until the CLL examines the state of its last sequence command.
The PS knows nothing about CLLs or completion protocols what-so-ever. Therefore, even if the command com-
pleted successfully, leaving the SIR record(s) with the expected values, they will not necessarily retain those val-
ues.

To overcome these limitations, if desirable in the first place, would require constructing a fairly complex frame-
work on top of EPICS. It is deemed far better to take advantage of the structure of EPICS rather than attempting
to impose a rigid command protocol.
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This paper tests the IOI design through a set of common OCS level scenarios. The IOI track is described in the
preceding chapters and this paper assumes you’ve read them all!

The format of this document is to describe typical OCS scenarios and then show how the IOI behaves for that
scenario. Each new scenario can build upon previous scenarios and focuses on what is new to avoid repetitive
details. The result is fairly difficult to read, but the alternative would have been to repeat every step for each sce-
nario making it difficult to discern differences between scenarios. In the following, no distinction is made
between the CLL and the CADService.

Scenario 1 is the basic scenario—it includes all the activities required during processing of a normal command.
The other scenarios will refer to this one and will insert new steps in the basic scenario.

Short Description: An observer uses a console to set an instrument filter wheel and applies the change. He does
not care about completion.

Run-through. The following is the basic building block of IOI commands.

1 The observer modifies the screen to indicate the new filter value and presses the “Apply” button on the GUI.

2 The GUI creates a configuration part with the preset directive. It then accesses a service provided by the
CLL to send the part to the instrument.

3 The CLL examines the configuration to determine which PSA it goes to.

4 The CLL sends a config(apply) sequence command, with the configuration as its argument, to the appropri-
ate PSA.

5 The CLL waits for acceptance or rejection.

6 The PSA receives the sequence command.

7 The PSA extracts and evaluates the client’s access to the part and returns reject if the client has no access.

8 The PSA examines the part and maps the part name and the arguments to the appropriate CAD record (or
whatever is relevant in the PS).

9 The part becomes a command. The PSA performs the initial preset by writing the appropriate arguments to
the CAD record. This includes writing the given cl_data value to the cl_data argument, and writing preset to
the directive argument.

10 The PS reacts to the setting of the CAD record, processes, and executes the CAD-specific routine that vali-
dates the command arguments.

11 The PS finds the arguments acceptable, but does not yet start the action. It simply sets the CAD record’s
accept/reject field to accept and returns.
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12 The PSA checks to see if the command was accepted by querying the CAD field as a result of the put call-
back.

13 Since the command was accepted, the PSA completes the application by setting the APPLY CAD.

14 The PS then evalutes the entire requested configuration.

15 The PS finds the configuration acceptable and sets the APPLY CAD record’s accept/reject field to accept and
starts the action, writing busy:cl_data to the APPLYC CAR record.

16 The PSA checks to see if the command application was accepted by querying the APPLY CAD accept/reject
field as a result of the put callback.

17 The command was accepted and has been started. The PSA protocol returns accept to the CLL of the con-
sole caller.

18 The CLL of the client forgets everything it ever knew about the request.

19 Once the filter wheel action is complete in the instrument IOC, the filter wheel code sets its CAR record to
done causing the record to have the value IDLE:CL_DATA.

Short Description: An observer uses a console to set an instrument filter wheel and applies the change. He inter-
actively waits for completion.

Run-through. Interactively waits means that the observer waits for completion by examining something on
the screen that shows him when the action has completed. In this scenario a graphical light
goes red when the filter wheel is moving and green when it is idle. The observer knows the
command is completed when the light becomes green.

1 The console light device is monitoring the filter wheel action variable (CAR record). It uses a CLL API call
to this. The name of the action variable was obtained by the developer of the console from the instrument
PDF document.

2 Steps 1 - 15 of Scenario 1.

3 The console’s CLL monitoring protocol notices that the CAR went from IDLE to BUSY. It call’s the appli-
cation’s CAR callback and it changes the color of the light to red, indicating that the filter wheel is moving.

4 Steps 16 - 19 of Scenario 1. Note in step 18, “forgetting everything” does not imply that the CAR record
isn’t still being monitored.

5 The console’s CLL CAR monitoring protocol notices that the CAR went from BUSY to IDLE. It calls the
application’s CAR callback and it changes the color of the light back to green.

6 The observer notices the transition from red to green and continues his work. He might also choose to look
at the status value of the filter wheel but since there was no error or modification, he should be confident that
the action completed successfully.

Short Description: An observer uses a console to set an instrument filter wheel and applies the change. The value
he requests is not valid and the ICS rejects the request.

Run-through. The purpose of this scenario is to show how the parameters for a request are evaluated and how
our system behaves in this kind of situation.

1 Steps 1 - 10 of Scenario 1.

2 The CAD-specific routine finds the request to be unacceptable. Note that future config(apply) commands
must be able to rely upon the value of the filter wheel being unmodified/uncorrupted by this aborted com-
mand. Thus, the PS must perform whatever actions are necessary to make this true.

3 The PS places a message in the CAD reason field. The PS sets the CAD record’s accept/reject field to reject
and returns.

4 The PSA checks to see if the command was accepted by querying the CAD field as a result of the put call-
back.

5 The command was rejected and it reads the reason.
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6 The CLL notes that the request was rejected and hands rejection to the console CLL along with the reason.

7 The CLL forgets everything it ever knew about the request.

Short Description: An observer uses a console to set an instrument filter wheel and applies the change. He inter-
actively waits for completion. Before the filter wheel completes, the observer cancels the
operation.

Run-through. This scenario is the much the same as the previous ones. The difference is that before the
action is completed, the observer decides to cancel the operation. All CAD records must sup-
port an abort directive which should cause their action to abort if possible. (If not, the com-
mand should be rejected.)

1 Steps 1 - 3 of Scenario 2.

2 The PSA checks to see if the command application was accepted by querying the APPLY CAD accept/reject
field as a result of the put callback.

3 The command was accepted and has been started. The PSA protocol returns accept to the CLL of the con-
sole caller.

4 The console uses the CLL to send the apply sequence command for the filter part with the abort directive.

5 Steps 3 - 8 of Scenario 1.

6 The part becomes a command. The PSA sets the abort directive to the CAD record.

7 The PS reacts to the setting of the CAD record by processing and executes the CAD-specific routine that val-
idates the command arguments. The routine must know whether or not the filter wheel can abort.

8 The PS can abort the action. It does the abort of the action and writes idle to the action’s CAR record.

9 The PS sets the CAD record’s accept/reject field to accept and returns. (Note the ordering of steps 8 and 9 is
dependent upon the PS implementation.)

10 The command was accepted and has been started. The PSA protocol returns accept to the CLL of the con-
sole caller.

11 The console’s CLL CAR monitoring protocol notices that the CAR went from BUSY to IDLE. It calls the
application’s CAR callback and it changes the color of the light back to green. (This could happen at any
point after step 8).

Short Description: An observer uses a console to set an instrument filter wheel and applies the change. He inter-
actively waits for completion. Before the filter wheel completes the observer cancels the
operation, but this filter wheel can not be canceled.

Run-through. This scenario is essentially the same as the last but this time the CAD record in the EPICS PS
evaluates the request and finds it can’t do the cancel and rejects it.

1 Steps 1 - 7 of Scenario 4.

2 The PS cannot abort the action.

3 The PS sets the CAD record’s accept/reject field to reject and returns.

4 The PSA returns reject to the CLL of the console caller.

5 The console posts a message saying the action couldn’t be accomplished. Of course, we wouldn’t put up a
cancel filter wheel button if we couldn’t cancel the filter wheel!.

Short Description: An operator uses a console to offset the telescope. The offset is set to 20 arcseconds and he
wishes to go 60 arcsecs. He waits for each of the offsets to complete before entering the next
one.

Run-through. This scenario is simple because it is really the application of Scenario 2 (with a telescope offset
rather than a filter wheel) three times in a row. The operator sees the offset action light go green



IOI Track Scenarios
Common Scenarios

to red then back to green. Following the transition back to green he pushes the offset button
again. He repeats to get 60 total arcseconds.

Short Description: An operator uses a console to offset the telescope. The offset is set to 20 arcsecs and he
wishes to go 60 arcsecs. This time he pushes the offset button three times.

Run-through. The only thing that is different here is that the ongoing offsetting action is being interrupted/
modified before it completes. The PSA monitor protocol monitors for this.

1 The operator modifies the screen to indicate a 20 arcsecond offset value.

2 The operator selects apply.

3 A console light device is monitoring the offset action variable. It uses a CLL API call to do this. The name of
the action variable was obtained by the developer of the console from the telescope PDF document.

4 Same as Scenario 1 steps 3 - 15.

5 Some brief time later, the console light on the screen has gone from green to red indicating the telescope is
offsetting.

6 While the command is being accepted or rejected by the PSA/PS, the offset button can not be pushed. This
should only be a brief amount of time (milliseconds, I suppose).

7 Once the first request is accepted, the operator pushes the button a second time.

8 Do the steps in this Scenario 2 - 6.

9 As a result of the IOC setting the CAR to busy, the CAR record notifies its monitors that it was MODIFIED.
It then goes back to BUSY and also notifies its monitors.

10 The CLL monitor protocol notes that the part’s action is MODIFIED. It does not alert its client because the
source of the modification and the current client are the same.

11 The offset light on the console momentarily flashes indicating that the second offset has been accepted/mod-
ified.

12 Repeat these steps 2 - 11 in this Scenario.

13 Eventually, the 60 second offset is complete and the IOC writes done to the offset CAR.

14 The CLL Monitor Protocol notes that no one has interrupted the action.

15 The operator notices the transition from red to green noticing that the offsetting action has successfully com-
pleted.

Short Description: An operator uses a console to offset the telescope. The offset is set to 20 arcsecs and he
wishes to go 60 arcsecs. This time he pushes the offset button three times. He then decides
that he meant to go west rather than east and cancels the offset.

Run-through. This scenario is a combination of Scenario 7, with five pushes of the offset button rather than
three, and Scenario 4 where an operator cancels an ongoing operation.

1 The observer modifies the offset console screen value to 20 arcseconds.

2 The observer selects apply.

3 Steps 2 - 11 of Scenario 7 are run 5 times.

4 Sometime before completion, the operator pushes the cancel offset button which means the telescope should
stop doing any offset action now.

5 Steps 2 - 15 of Scenario 4 with appropriate changes of “filter wheel” to “offset”.

6 The operator notes the transition from red to green indicating that the offsetting action has successfully
aborted.
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Short Description: An operator uses a console to offset the telescope. The offset is set to 100 arcsecs and he
wishes to go 100 arcsecs. He pushes the offset button and waits. Another operator uses his
console to offset 20 arcsecs. What do the operators see?

Run-through. This scenario is designed to show that this kind of thing could be a problem and that the PSA
protocol gives warnings when it occurs. This kind of situation would result in unknown prob-
lems without the PSA protocol.

1 Operator 1 modifies his console screen to indicate a 100 arcsecond offset value.

2 Operator 1 selects apply.

3 Steps 3 - 15 of Scenario 1

4 Some time later (doesn’t matter since the PSA serializes operations and one of the two must get it first),
operator 2 modifies his screen to indicate a 20 arcsecond offset value.

5 Operator 2 selects apply.

6 The part becomes a command. The PSA sets the apply directive to the CAD record.

7 The PS reacts to the setting of the CAD record by processing and executes the CAD-specific routine that val-
idates the command arguments. The routine must know whether or not the offset action can be modified.

8 The PS can modify the offset action. It does the modify of the action and writes busy:cl_data to the action’s
CAR record.

9 The PS sets the CAD record’s accept/reject field to accept and returns.

10 The command was accepted and has been started. The PSA protocol returns accept to the CLL of console2.

11 Console 1’s CLL CAR Monitor notes that its offset action has been modified before it completed and that
someone else modified it.

12 Console1’s offset light temporarily shows the modified color but remains green because the offset action is
still busy.

13 The console1 operator gets a message saying his offset request probably didn’t complete correctly because
console2 interrupted it.

14 The console2 operator sees the transition from red to green when offsetting has successfully completed.
Chances are pretty good that he didn’t get what he wanted, but since the screen showed that the telescope
was busy when he sent the command, we don’t warn him.

Note. When a second source modifies an ongoing operation the original source is notified and the second source
becomes the “owner” of the action. This means that the second source can now apply further changes to the
action without being notified. If console 1 modified the offset, console 2 would be notified that console 1 was
altering console 2’s action. This transfer of ownership idea is true for the other directives (pause, stop, continue,
and abort) also.

Short Description: An operator uses a console to slew the telescope to a new target. A short time later he
changes his mind and enters and applies a new target.

Run-through. This scenario is focused on showing that both the two kinds of command modification dis-
cussed in the SDD are handled correctly in our system. There is really no difference between
this and Scenario 7. It must be possible for the TCS CAD to accept a new target while it is busy
moving to a target for this scenario to work.

1 The operator sets the slew target in the console screen value to a new position.

2 Steps 2 - 11 of Scenario 7 substituting slew for offset.

3 Sometime before completion, the operator enters a new target position and pushes the apply button.

4 Steps 2 - 6 of Scenario 7.
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5 As a result of the IOC setting the CAR to busy:cl_data, the CAR record notifies its monitors that it was
MODIFIED. It then goes back to BUSY and also notifies its monitors.

6 The CLL protocol notes that the action is MODIFIED. It does not alert its client because the source of the
modification and the current client are the same.

7 The slewing light on the console momentarily flashes indicating that the second slew has been accepted/
modified.

8 Eventually, the second slew is complete and the IOC writes done to the slewing CAR.

9 The CLL Monitor Protocol notes that no one has interrupted the action.

10 The operator notes the transition from red to green indicating that the slew action has completed success-
fully.

Short Description: The operator’s TCS console has a button to turn on and off telescope tracking. The execution
of this command is instantaneous since there is really no “action” associated with the
request. He turns off the tracking.

Run-through. The purpose of this scenario is to show that there can be CAD records in a PS that have no
actions. Commands that have no real actions can choose to complete immediately meaning that
the PS doesn’t return until the command is complete. This is acceptable for commands that
take so little time that the action mechanism is inappropriate or too heavyweight. To use the
immediate completion option, the CAD record must know that the command has completed
correctly before returning. There can be no CAR record for an immediate completion CAD
record. If there are no action, the CAD returns rejection or immediate completion, which is the
same as acceptance.

1 The observer pushes the track-off button.

2 The observer selects apply.

3 The CLL sends the apply sequence command to the appropriate PSA. The part contains the apply directive.

4 The CLL waits for rejection, or immediate completion.

5 The PSA accepts the sequence command.

6 The PSA examines the part and maps the part name and the arguments to the appropriate CAD record (or
whatever is relevant in the PS).

7 The PSA notes that this CAD has no associated CAR record meaning it completes immediately—it can’t be
interrupted/modified.

8 The part becomes a command. The PSA applies the part (sets the apply directive) to the CAD record.

9 The PS reacts to the setting of the CAD record, processes, and executes the CAD-specific routine that vali-
dates the command arguments.

10 The PS finds the arguments acceptable. It executes the action and checks its completion.

11 It completes successfully.

12 The PS sets the CAD record’s accept/reject field to complete and returns.

13 The PSA checks to see if the command was completed by querying the CAD field as a result of the put call-
back.

14 The PSA finds the command was completed and returns complete to the CLL caller.

15 The CLL forgets everything it ever knew about the request.

Short Description: The operator’s TCS console has a button to turn on and off telescope tracking. He turns off
the tracking but for some reason the command is rejected by the TCS.

Run-through. This scenario is just like Scenario 11 except that the immediate completion command is
rejected by the CAD record.
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1 The observer pushes the track-off button.

2 The observer selects apply.

3 The CLL sends the apply sequence command to the appropriate PSA. The part contains the apply directive.

4 The CLL waits for rejection, or immediate completion.

5 The PSA accepts the sequence command.

6 The PSA examines the part and maps the part name and the arguments to the appropriate CAD record (or
whatever is relevant in the PS).

7 The PSA notes that this CAD has no associated CAR record meaning it completes immediately—it can’t be
interrupted/modified.

8 The part becomes a command. The PSA applies the part (sets the apply directive) to the CAD record.

9 The PS reacts to the setting of the CAD record, processes, and executes the CAD-specific routine that vali-
dates the command arguments.

10 The PS finds that it can’t execute the command right now.

11 The PS sets the CAD record’s reason for failure and the accept/reject field to reject and returns.

12 The PSA checks to see if the command was completed by querying the CAD field as a result of the put call-
back.

13 The PSA finds the command was rejected and returns the reason and rejection to the CLL caller.

14 The CLL in the console posts the reason for rejection.

15 The CLL forgets everything it ever knew about the request.

Short Description: An observer uses a console to set an instrument filter wheel that takes a long time to move
between filters and he applies the change. He interactively waits for completion. The filter
wheel sends information whenever it goes through an intermediate value.

Run-through. This scenario is designed to show how a console can receive information from an action that is
ongoing through the ALERTED state.

1 The observer modifies the screen to indicate the new filter value.

2 The observer selects apply.

3 The console light device is monitoring the filter wheel action variable. The console code uses a CLL API call
to do this. The name of the action variable was obtained by the developer of the console from the instrument
PDF document.

4 Steps 3 - 15 of Scenario 1.

5 Some brief time later, the console light shows that command has been accepted. The light on the screen has
gone from green to red indicating the filter wheel is moving.

6 During the execution of the long command, the IOC sets the CAR message_in and then writes alerted to the
CAR record.

7 The console is monitoring the filter wheel’s action variable and its callback responds to the monitor.

8 The CLL code reads the alerted message from the CAR record and posts it on the screen.

9 Steps 6-8 of this scenario occur 3 times during the action.

10 Eventually, the IOC completes the filter action and writes done to the filter wheel CAR.

11 The CLL Monitor Protocol notes that no one has interrupted the action.

12 The console monitor for the CAR record goes off and changes the color of the light back to green.

13 The observer notices the transition from red to green and continues his work. He might also choose to look
at the status value of the filter wheel but since there was no error or modification, he should be confident that
the action completed successfully.
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Short Description: An observer uses a console to set an instrument filter wheel that used to take a long time but
has been tuned up to work quickly. He interactively waits for completion. The filter wheel
sends information whenever it goes through an intermediate value but now the information
comes fast and furious.

Run-through. This scenario shows how the use of alerted can be used improperly resulting in lost data. The
scenario is exactly as in Scenario 14 except that this time the IOC writes alerted to the filter
wheel CAR very quickly. Since the callback response in the client requires a ca_get call to the
IOC, there is a good chance that the message that in the CAR record has changed since it
posted the original monitor. In other words, when the client reads the CAR record message it
always gets the most recent value of the message. The most recent message is probably the cor-
rect one. If the CAR was written quickly four times, the client might read the last message four
times. This is viewed as acceptable. Alerted is meant to be used as an unreliable status mecha-
nism, not a inter-machine message protocol.

Short Description: An observer interactively uses a console to set an instrument filter wheel that takes a long
time to complete. An engineer asks the observer to pause the filter wheel before it has com-
pleted its motion so he can inspect the mechanism. Later the observer resumes the operation.

Run-through. Every configuration part that maps to a command/CAD record can expect the paused and con-
tinued directives. Not all hardware devices can be paused and the CAD record subroutine must
reject requests if it can not pause whether or not the CAD is busy.

1 The observer modifies the screen to indicate the new filter value.

2 Steps 2- 15 of Scenario 1.

3 Some brief time later, the console light shows that command has been accepted. The light on the screen has
gone from green to red indicating the filter wheel is moving.

4 The engineer requests the operator to pause the filter wheel. The operator pushes the pause button.

5 Steps 2- 7 of Scenario 1 with the pause directive rather than the apply directive.

6 The part becomes a command. The PSA pauses the part (sets the pause directive) to the CAD record.

7 The PS reacts to the setting of the CAD record, processes, and executes the CAD-specific routine that vali-
dates the command arguments.

8 The PS is pause-capable. It pauses the filter wheel, and writes paused to the already busy action’s CAR
record.

9 The PS sets the CAD record’s accept/reject field to accept and returns.

10 The PSA checks to see if the command was accepted by querying the CAD field as a result of the put call-
back.

11 The command was accepted and has been started to the PSA protocol returns accept to the CLL of the con-
sole caller.

12 The CLL forgets everything it ever knew about the request.

13 The console monitor for the CAR record goes off and changes the color of the light to the paused color. The
operator can visually tell that the filter wheel is paused.

14 At a later time, the engineer finishes his check and the operator continues the filter wheel action.

15 Steps 2- 7 of Scenario 1 with the continue directive rather than the apply directive.

16 The part becomes a command. The PSA continues the part (sets the continue directive) to the CAD record.

17 The PS reacts to the setting of the CAD record, processes, and executes the CAD-specific routine that vali-
dates the command arguments.

18 The PS continues the filter wheel, and writes busy:cl_data to the action’s CAR record.

19 The PS sets the CAD record’s accept/reject field to accept and returns.
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20 The command was accepted and has been started so the PSA returns accept to the CLL of the console caller.

21 The CLL forgets everything it ever knew about the request.

22 The console is monitoring the filter wheel’s action variable and its callback responds showing the filter
wheel becomes busy.

23 Eventually, the IOC completes the filter action and writes done to the filter wheel CAR.

24 The console monitor for the CAR record goes off and changes the color of the light back to green.

25 The CLL Monitor Protocol notes that no one has interrupted the action.

Note that when the system is paused the IOC writes pause and not pause:cl_data to the CAR record for the
action. This assumes that the only entity who will pause an action is the entity that started the action. If a second
console paused an action started by the first console no one would know. This is viewed as an acceptable trade-
off over requiring the IOC to write the cl_data with paused. See the next scenario for what happens when a sec-
ond console continues the first console’s action.

Short Description: An observer interactively uses a console to set an instrument filter wheel that takes a long
time to complete. An engineer asks the observer to pause the filter wheel before it has com-
pleted its motion so he can inspect the mechanism. Later some other operator with another
console notices the filter wheel is paused and pushes continue.

Run-through. I won’t go through the steps again because this is very similar to other scenarios. In this case,
the first operator is notified that someone continued an action they had paused. The CLL proto-
col receives the BUSY:cl_data monitor and notes that some process other than itself continued
the action. This could be shown as an error.

Access/permission policies are built upon the PSA interface and CAR monitoring protocol. Clients are checked
and stopped by the PSA in software layers above the PSA principal systems interface.

Of course, the OCS knows little about other principal systems communicating between each other because they
do not go through the OCS CLL. It is impossible for the OCS to deal with all the possible scenarios.

Short Description: An observer uses a console to set an instrument filter wheel and applies the request. While
the action is underway, the filter wheel belt breaks and the instrument is sophisticated
enough to note it. What happens?

Run-through. This scenario is used to show how an error which occurs during an operator-initiated action
shows itself in the system and also how the other PS must set the error condition.

1 The observer modifies the screen to indicate the new filter value.

2 Steps 2- 15 of Scenario 1.

3 Some brief time later, the console light shows that command has been accepted. The light on the screen has
gone from green to red indicating the filter wheel is moving.

4 While the filter wheel is moving (before it completes and the action is busy), the filter wheel belt breaks and
the hardware which has a sense switch on the belt closes. The IOC notices the filter wheel belt has broken
through MBBI status record.

5 The IOC writes “Filter belt busted.” to the filter movement CAR record message_in field.

6 The IOC sets the CAR record status_in to error causing the monitors to fire. The CAR record stays in the
ERROR state.

7 If the IOC has a “belt status” SIR record, it also sets the “broken” value and causes the SIR alarm.

8 The IOC health SIR should go to the “BAD” state.

9 The instrument console shows the filter wheel action has failed.

10 The Alarm Manager Program “beeps.” and opens showing an instrument failure.
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11 The system status display shows the health of the instrument to be “BAD.”

12 The operator goes and gets a replacement belt and makes the world right again.

Short Description: During the course of the night the TCS starts various actions on its own. Every 15 minutes
the TCS checks the telescope elevation and reshapes the primary mirror. How does this show
up in the Primary Mirror Console and the OCS in general?

Run-through. All previous scenarios have involved operator or OCS initiated actions. These requests/com-
mands go through the OCS PSAs and CLL. When an IOC starts an action we call it a self-initi-
ated action. The principal system itself is viewed as just another client starting actions.
Therefore, the IOC must still set the CAR record with its cl_data so that consoles can monitor
self-initiated actions too.

1 The 15 minute timer goes off and the TCS checks the elevation of the telescope and starts the mirror shaping
action.

2 The IOC writes busy:tcs_id for self-initiated action busy to the mirror reconfigure action and begins the
reconfigure process. Tcs_id is just a synonym for whatever name the TCS has.

3 The Primary Mirror Console monitoring the mirror reconfigure CAR lights the busy color possibly noting in
a special way that the busy is from a self-initiated action. (It might know the TCS cl_data.)

4 The operator smiles warmly knowing the mirror is reshaping itself on schedule.

5 If no one has previously commanded the mirror reconfigure CAR the PSA gets no notification and no one
even cares.

6 Eventually the reconfigure action is completed and the IOC sets the action CAR with the done causing the
CAR state to go to IDLE.

7 The Primary Mirror Console display shows the green completed color.

Note. If an IOC modifies its own ongoing action, it must also send busy:cl_data to cause the MODIFY state to
briefly show.

Short Description: An operator makes a request that results in an action that takes a long time to complete.
While the action is busy, the IOC which periodically triggers the same action, starts its action
interrupting the operator’s action.

Run-through. In this scenario, a self-initiated action starts up before the operator-initiated action is complete.
Conceivably this might never happen or there might be IOC code that permits it, but the CLL
monitor protocol must handle it properly. In this case the operator receives a message telling
him that the self-initiating action interrupted his action.

1 The operator pushes the reconfigure button because he thinks that the mirror needs it.

2 Steps 2- 15 of Scenario 1.

3 The Primary Mirror Console monitoring the mirror reconfigure CAR lights the busy color.

4 The 15 minute timer goes off and the TCS checks the elevation of the telescope and starts the mirror shaping
action.

5 The IOC writes busy:tcs_id for self-initiated action busy to the mirror reconfigure action and begins the
reconfigure process.

6 The CLL receives an modified:tcs_id and busy:tcs_id from the mirror reconfigure CAR. The CLL notifies
the operator that his ongoing mirror reconfigure action was interrupted/modified by the IOCs action.

7 The Primary Mirror Console monitoring the mirror reconfigure CAR briefly lights modified and then goes
back to the busy color.

8 Eventually the reconfigure action is completed and the IOC sets the action CAR with the done causing the
CAR state to go to IDLE.
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9 The Primary Mirror Console display shows the green completed color.

Note. The CLL Monitor Protocol will not notify an operator of interruptions of an action unless that application
has started the action.

Short Description: An IOC starts an action as a result of some internal computations. The action takes a long
time to complete. The operator decides he wishes to control the same action and sends a
command to the IOC that is accepted by the CAD.

Run-through. The difference between this scenario and Scenario 18 is that in this scenario, before the self-
initiated action completes, the operator uses a console to command the same action the IOC
has self-initiated causing the self-initiated action to be modified. The IOC gets no notification
since there is no one to notify. The TCS is not using the OCS CLL. Once the operator-initiated
action is accepted, the console will see the modified action light go on briefly.

1 The 15 minute timer goes off and the TCS checks the elevation of the telescope and starts the mirror shaping
action.

2 The IOC writes busy:tcs_id for self-initiated action busy to the mirror reconfigure action and begins the
reconfigure process.

3 The Primary Mirror Console monitoring the mirror reconfigure CAR lights the busy color.

4 The operator pushes the reconfigure mirror button anyway.

5 Steps 2- 15 of Scenario 1.

6 When the IOC receives the operator’s command it accepts it and restarts the mirror reconfigure operation. It
sets the mirror reconfigure CAR busy:cl_data when it restarts the process.

7 Eventually the reconfigure action is completed and the IOC sets the action CAR with the done causing the
CAR state to go to IDLE.

8 The Primary Mirror Console display shows the green completed color.

9 The CLL Monitor Protocol notes that no one has interrupted the action.

The scripting language of the system is not yet designed at this phase of the project so the first few steps of these
scenarios are best guesses. The requirements of the scripting language are independent of the actual language
syntax.

Short Description: A script is written that offsets the telescope. The author is not concerned with completion of
the offset and the next line of the script is executed immediately.

Run-through. A single script would consist of many lines of language constructs. Some of the lines contain
commands to our systems. When one command is executed from a scripting language the gen-
erated command is the same as a console command. In this run-through it is assumed that TCL
is used and that there is a software layer below the scripting language and above the CLL that
translates TCL commands to sequence commands.

1 The script language interpreter interprets the following:

set tcs:offset:x 20

set tcs:offset:y 20

set tcs:offset:units: arcsecs

put tcs:offset

2 The first three lines build an attribute/value set. The last line causes the configuration part to be sent to the
TCS.

3 The “middle layer” does any modification of the part and makes the call to the CLL to send the part.
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4 Steps 2- 14 of Scenario 1.

5 The CLL linked to the scripting language receives the accept from the TCS PSA noting the command was
accepted and it doesn’t need to call the “rejected” callback.

6 The CLL linked to the scripting language forgets everything about the request.

Short Description: A script is written that offsets the telescope. The next line in the script opens the instrument
shutter so the script author needs to know that the offset is completed before the next line of
the script is executed.

Run-through. Scripting languages will often have to wait for completion of actions before continuing inter-
pretation. This scenario is the same as Scenario 21 but this script waits. This is what we have
called a synchronous wait because the script blocks right after executing the command it needs
to wait for until the action is complete. A new wait command is added.

1 The script language interpreter interprets the following:

set tcs:offset:x 20

set tcs:offset:y 20

set tcs:offset:units: arcsecs

waitnow put tcs:offset

set ics:filter:value blue

put ics:filter

2 The first three lines build an attribute/value set. The last line causes the configuration part to be sent to the
TCS.

3 The “middle layer” does any modification of the part and makes the call to the CLL to send the part.

4 Since the waitnow command has been used, the CLL stores information on the request and blocks until the
offset action completes. The “middle layer” provides the CLL with a “IDLE” callback (as well as an excep-
tion callback to handle: MODIFIED, PAUSED, CONTINUE, ERROR, etc. It also supplies a “rejection”
callback.

5 Steps 2- 14 of Scenario 1.

6 The CLL linked to the scripting language receives the accept from the TCS PSA noting the command was
accepted and it doesn’t need to call the “rejected” callback.

7 Eventually, the CLL receives completion notification from the ARD monitor. The CLL notes that the action
was not interrupted. The script unblocks and script interpretation continues.

Short Description: A script is written that offsets the telescope. The script needs to wait for the offset to com-
plete but the writer wants to go ahead and execute some other commands before “joining”
the offset in progress and waiting.

Run-through. This scenario is the same as Scenario 22 but this script executes some other commands before
waiting. This will probably require a different wait primitive that would save some “wait-state”
that would allow the join to happen later. Two approaches are possible and probably necessary.
One would allow a callback and one would allow a wait in the script. Both are sketched out
below.

1 The script language interpreter interprets the following:

set tcs:offset:x 20

set tcs:offset:y 20

set tcs:offset:units: arcsecs

waitlater put tcs:offset callback-proc-name

set ics:filter:value blue

put ics:filter
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The callback proc “callback-proc-name” is called when tcs:offset completes. Or:

set tcs:offset:x 20

set tcs:offset:y 20

set tcs:offset:units: arcsecs

set waitstate [waitlater put tcs:offset]

set ics:filter:value blue

put ics:filter

waitnow $waitstate

2 The first three lines build an attribute/value set. The last line causes the configuration part to be sent to the
TCS.

3 The “middle layer” does any modification of the part and makes the call to the CLL to send the part.

4 In the first example, the CLL notes that it must provide completion notification for tcs:offset and saves the
name of the callback function.

5 In the second example, the CLL notes that it must provide completion notification for tcs:offset and it passes
a handle back to the script that can be used in a later command. This is common in TCL.

6 Steps 2- 14 of Scenario 1 possibly multiple times.

7 Eventually, the CLL receives completion notification from the ARD. The CLL protocol notes that the action
was not interrupted.

8 In the first case, the callback function is called by the CLL.

9 In the second case, the script is unblocked and execution continues.

10 The CLL throws away knowledge of the waiting.

A number of scenarios could be generated for the various CAR conditions that can occur while a script is run-
ning. These scenarios may be extended as part of the Instrument Console Track. These three are enough to indi-
cate what features are needed in the CLL to support scripting and to show how scripting can work.

The Sequence Executor adds the requirement that the CLL/IOI synthesize completion information for configura-
tions from the various principal system configurations and configuration parts that make of the configuration.
This feature can be built upon the waiting primitives required for simple scripting in the previous section. Call-
backs are made or scripts block until a group of actions complete rather than single actions.

It should also be possible to execute a complete configuration and not wait for it to complete although this feature
will be less used.

These scenarios are started here but will be completed during the detailed design for the planned observing track
and after the syntax for configuration is known.

Here is an example of a configuration TCL script.

set x [config new]

$x add {tcs:offset:x 20}

$x add {tcs:offset:y 20}

$x add {tcs:offset:units: arcsecs}

$x add {ics:filter:value blue}

waitlater put $x callback-proc-name

config destroy $x
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The callback proc “callback-proc-name” is called when configuration x completes. Or:

set x [config new]

$x add {tcs:offset:x 20}

$x add {tcs:offset:y 20}

$x add {tcs:offset:units: arcsecs}

$x add {ics:filter:value blue}

set waitstate [waitlater put $x callback-proc-name]

set ics:otherfilter:value bb239

put ics:filter

waitnow $waitstate

config destroy $x

The configuration syntax is just a generalization of the single part syntax.

Short Description: A sequence executor sends an APPLY command with a configuration which contains compo-
nents for just one principal system.

Run-through. This scenario shows how configurations for one PS are constructed.

Short Description: A sequence executor sends an APPLY command with a configuration which contains compo-
nents for multiple principal systems.

Run-through. This scenario shows how the CLL combines PS configuration to wait for a complete configura-
tion to complete.

Short Description: An observation is ongoing. The observer sees clouds and wishes to pause the currently exe-
cuting observation.

Run-through. This scenario shows how the PAUSE sequence command is used with an ongoing sequence
command.

Short Description: An observation is paused. The clouds are gone and the operator wishes to continue the obser-
vation.

Short Description: An observation is paused. The clouds are gone and the operator wishes to continue the obser-
vation.

Short Description: An observation is paused. The clouds are gone and the operator wishes to continue the obser-
vation.

Short Description: An observation is paused. The clouds are gone and the operator wishes to continue the obser-
vation.

Short Description: An observation is paused. The clouds are gone and the operator wishes to continue the obser-
vation.

Waiting for the OCS detailed design.
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This document describes the issues and trade-offs that were considered by the OCS group that resulted in the
three tiered IOI design. This chapter assumes you have read the other chapters. The IOI itself is based upon ear-
lier work by the Gemini Controls Group which produced the command layering model [3] and [4]. The rationale
behind this model is not discussed here.

The following are design goals for the IOI.

• The IOI should be lightweight—simple, understandable, and quick.

The IOI is the core upon which the entire OCS software is built. It is extremely important that it provide its func-
tionality as simply as possible without imposing excess restrictions upon the layers above it. Information passing
through the IOI software layer must pass through quickly requiring minimal mandatory processing. This is what
is meant by lightweight. In a sense the IOI track is the OCS kernel; it provides the basic, required OCS commu-
nication functionality and that is all. The quality of being lightweight is subjective; however, it is very clear when
a piece of software is not lightweight.

• The IOI should be matched to the functionality provided by the other principal systems. It is assumed that the
majority of the PS are EPICS-based. The IOI is designed to work with an EPICS or an EPICS-like system (i.e.
one that mimics the behavior of an EPICS system).

Knowing that the majority of the other principal systems are EPICS-based it would be foolish to construct an
OCS software system that did its business in a way that made communication with EPICS difficult. The features
of EPICS must be used to the advantage of the OCS whenever possible. However, the OCS design [1] and
requirements [9] contain features that are either currently unsupported in EPICS, are supported in EPICS in ways
that are not useful to the OCS, or are very specific to the OCS required functionality and are not relevant to
EPICS. For example.

• The OCS has a requirement for completion notification for commands from consoles, scripting language shells,
and script executors. EPICS completion is based upon status values.

• The OCS has a requirement for verification of command arguments that is not supported in EPICS in a consistent
way.

• The OCS has requirement for flexible and changing access to systems and hardware subsystems. EPICS access
and security is not terribly flexible.

• The OCS is dynamic and needs to create and destroy status information during an observing session; this is cur-
rently not possible in an IOC.

• The OCS programs must communicate with one another and they are not EPICS-based.

These features drive the need for the IOI functionality in the OCS.
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The IOI track must provide the software interface between the OCS and the other principal systems. The IOI
parts are shown in Figure 7 - 1.

The two new parts of the OCS that are part of the IOI track are the Command Layer Library and the Principal
System Agent. These two parts are built upon the features of the Status/Alarm Database and the Action/Response
Database to provide the three kinds of OCS applications with the capability of communicating with the other
principal systems in the ways required by their specific functionality.

The Command Layer Library (CLL) provides OCS applications with a programming API (a shell program built
upon the IOI would provide a scripting environment) that can be used to communicate with the other principal
systems.

The CLL accepts sequence commands (opcode with configuration argument) from an application, sends them to
the appropriate Principal System Agent, and waits for their immediate acceptance, rejection, or completion.
Acceptance means that the principal system can do what it is requested to do and has begun the request; rejection
means that it can’t do it. Immediate completion means that the operation is so fast that it can be done immedi-
ately and that it is all finished.

The Principal System Agent (PSA) process, of which there is one per principal system, provides the Command
Layer to Attribute/Value layer interface of the behavioral model. It provides the translation, if required, of config-
urations to the attribute/value interface of a particular principal system. The PSA encapsulates the peculiarities of
a specific principal system and hides it from the rest of the OCS software.

A PSA accepts sequence command and configuration part information from the CLL and maps it to the attribute/
value layer of the principal system. It then executes the configuration and waits for acceptance, rejection, or
immediate completion from the principal system. It then passes this information back to the calling command
layer library in the original application.

This design is lightweight. For commands only one process sits between any client and a principal system. For
status the CLL provides a very thin software interface above the status/alarm database with no intervening pro-
cess.

A number of design decisions were made to come up with this design. The format is to pose a design question
and then give the answer.
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Software Library Environment

•

Consoles are generally made up of a number of graphical elements. Some elements display status
information or action information. Other elements are there to allow the console user to issue commands to the
principal systems.
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In our system, once a command is issued and accepted by the principal system a console no longer needs to keep
track of the command. The console advises the user of the progress of the command through the presentation and
changes of status and action variables (which are transparent to the console user). In most cases consoles do not
have to wait for completion of the actions that they initiate. A console might wish to wait if, for instance, it had a
button such as setup which really did several things in sequence. (Even in this situation the console would not
block disallowing user input.) The action information for such a button would need to be synthesized from the
action variables of the individual commands requiring a waiting functionality. (This is really the scripting
requirement below.)

Consoles will present status and action variable information so the ability to monitor these kinds of variables in
the SAD is required.

Console command completion is visually apparent through the monitoring of action variables. It is important for
consoles users to know whether or not the actions they request have completed correctly. They also need to know
if some other process modifies and action they have started. This capability is not available in basic EPICS or
even the CAR record.

Summary. A console must be able to send sequence commands and monitor status and action variables. The abil-
ity to perform actions based on variable changes (monitoring) is required by consoles. A method of notifying
OCS clients when their actions do not complete properly is needed.

•

Some programs in our system may be shell applications that use a scripting language (PV-Wave,
TCL, others) to provide access to our principal systems. The only requirement shell environments add is the need
to wait for completion of operations. This occurs in scripts where the next command can’t be executed until the
current one completes. There are also cases where a command is issued and allowed to run while other script
commands are executed. At a later time a scripting language call is used to allow the script to wait until comple-
tion of a previously executed command.

Summary. A shell program and scripting language adds waiting for completion of commands to the CLL require-
ments.

•

Sequence executors are specialized scripting applications. They will send sequence executor com-
mands including configurations to multiple principal systems. They also need the ability to wait for completion
of applied configurations and executor commands.

Summary: A sequence executor adds the requirement that the CLL have the ability to determine when the appli-
cation of entire configurations is completed.

•

Programs within the OCS will need to communicate with one another. An example is a console
and a principal system agent. We feel that at this point in the design that the job of communicating with the other
principal systems provides a set of requirements for an OCS message system that is also adequate for inter-OCS
communications. These requirements are:

1. The message system must support an ability to send RPC-like request/reply messages. At this time, this mecha-
nism is only used to sending commands/configurations and waiting for immediate acceptance/rejection/immedi-
ate completion of a command.

2. All other completion information is through action variables which will be extended for Unix-system use within
the OCS. In other words, the OCS processes will provide action status for its processes too.
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3. The message system must support a subscription-based or EPICS-like monitor facility to allow clients to be
alerted of changes to status-like information (including actions).

4. The message size should not be limited to 8K which is the UDP message size limit.

•

At this time the PSA provides two important functions.

1. It is a single point of command control for principal systems allowing centralized control of access to the PS.

2. As a single point of control it allows us to guarantee that two processes do not interleave their requests to a single
CAD record. The CAD protocol requires the setting of multiple fields and two processes could use Channel
Access to write to the fields of one record at the same time.

If the item 2 problem isn’t important or can be solved another way (possibly by limiting simultaneous access
some other way), then the PSA could be eliminated and an OCSApp could communicate directly with a CAD
through the EPICSService.

•

There are three approaches we can think of.

1. A CLL-no PSA approach. In this case each application can put to all EPICS fields whenever it wants. The prob-
lem with interleaved access discussed above is an issue.

2. All PSA-no CLL approach. In this case configurations are sent to the PSA and processed. The PSA handles syn-
thesizing completion for the configurations and sends completion messages to all who are interested.

3. A system that shares duties between the PSA and the CLL. Monitoring of action variables and command comple-
tion is done in the CLL, and the sending of the configuration parts is handled by the PSA.

Choice three is what is described in the PDR documents. The reasons for doing this are:

1. We wanted to use “as much of the EPICS features” as possible. This means an application does its monitoring (in
the CLL) using Channel Access rather than having a single process do the monitoring. This might be seen as a
performance issue although there is no reason to believe that putting completion determination in a PSA would
cause a performance problem.

2. We felt dealing with the interleave problem is important and using the PSA as the single point where commands
are actually sent to the PS solves the problem.

•

Among other things, the communication facility must allow the clients to communicate with the
other entities in the software system. To do this the specific functions a communication facility must provide
include:

1. It must split configurations based on principal system.

2. It must forward principal system configurations to the principal systems.

3. It must return information on acceptance/rejection/immediate completion to the caller.

4. It must occasionally wait for completion of configurations or parts of configurations.

5. The library must provide an abstract interface to the SAD and ARD.

A command server can be viewed as a more capable Principal System Agent. The command server (CS) in the
OCS approach would consist of a single process that accepts configurations and sequence commands from the
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applications and forwards them to the appropriate principal system. Each client still must include a relatively
small CLL library that allows it to connect directly to the single command server. The command server would do
the things above within its own process and communicate with other processes through the OCS message sys-
tem.

Another approach is to include some parts of the above functionality in a code library that is linked as part of
every application. That application and the library would communicate directly with the principal system agents
requiring no intermediate process.

No other possible solutions are known at this time.

Trade-offs for a CS:

-- A CS is a separate process and allows most of the functionality to be centralized in a single process.

-- A CS adds a required communication for every message and every returned response. (PSA also requires
this for commands.)

-- A CS would need to monitor all the action variables for all configurations that come through it. Client pro-
grams would also need to set up monitors to status variables as well as all the action variables since consoles
will be displaying action information. A CS doubles the number of action variable monitors.

-- If a CS is reasonable it is probably true that there should be a status information server that sits above the
SAD.

-- The CS limits the EPICS-specific code.

Trade-offs for a linked implementation:

-- A static library is difficult to change requiring recompilation of all programs when the library is updated.

-- A library implementation simplifies (less code to maintain) the communication and integrates status and
command functions in one place.

The traditional problem with a linked library is that whenever you change anything in a library, everything that
links with that library must be recompiled. Many Unix versions including Solaris now support dynamically
linked libraries that allow unresolved references within an application to be resolved at run-time. In addition, this
library can be replaced with updated versions without recompiling programs. Of course this is only true when the
library API does not change.

We have chosen to go with a dynamically linked library because it is a more efficient implementation (one less
process) and it centralizes status and command functionality in one place. The dynamic linked library essentially
provides the features of the separate process without the interprocess communication. Commands still must pass
through a PSA so our solution is a combination of a command server with a shared library.

•

EPICS is a major part of the Gemini Control System but we believe that it is bad software design
to let the EPICS Channel Access interface migrate up too far into the OCS. For this reason our CLL API will
hide EPICS from the OCS client programs. Client applications will not know they are communicating with
EPICS systems. The functionality of our system is modeled/matched to EPICS however and keeping with the
goals of the IOI there will be a lightweight software interface to EPICS functionality whenever possible. Deci-
sions on how to use and build upon EPICS are very important and difficult to make.

However the communications within the OCS are modeled on the functionality of Channel Access. All processes
“monitor” status variables and are notified when things change just like Channel Access.
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•

The CLL must provide OCS clients with the ability to monitor changes in EPICS variables in the
SAD. Client programs will call functions in the CLL API to monitor attributes which are part of the principal
system’s published public interface (PDF file). Client programs will not make channel access calls.

Our system must also support status variables that are created on the fly. There are a number of things in the OCS
that are created and destroyed during an observing session which can also have public status values. Examples
are observations, sequence executors, and observing sessions. This fact argues for an interface for status informa-
tion that is layered above the EPICS status information interface.

•

The action/response database is used by the CLL to determine configuration/command completion
for clients. In addition, consoles can monitor action variables to show progress of actions caused by user interac-
tions with consoles

•

•

A PSA handles the commands for one principal system so the CLL can either send an opcode
and entire principal system configuration to a PSA or an opcode and a configuration part. A configuration part is
the set of attributes/values that are required for just one principal system command.

Trade-offs?

-- Sending an entire configuration sounds good from a design viewpoint and it has some nice features. It allows
the logic for splitting configurations into parts to be placed in the PSA rather than the CLL making a simpler
CLL. And it should be faster to send two big messages rather than 2N little ones where N is the number of
configuration parts.

-- However, it makes for a more complicated PSA and the communication between the CLL and the PSA can
be more complicated. When the PSA executes just one part it is simple to return the accept/reject/immediate
completion status (action response). The protocol is a just a request/response and no bookkeeping is required
on either end. When a configuration is sent, the PSA must create a message that describes the action
response for all the parts of the configuration. Then the CLL must parse the message, etc. leading to more
complicated software. There are also issues that must be dealt with when a part halfway through a configura-
tion is rejected. Do the other parts get executed? Are the completed ones rolled back? Some of these issues
are simpler to deal with on the client side rather than in the PSA.

-- If a client wanted to wait for completion of a configuration, a PSA-based solution would either have to mon-
itor all the action variables for the configuration (and all the other outstanding configurations) and send com-
pletion to the original application which issued the configuration or the structures required to wait would be
redundantly contained in the CLL since the CLL would still need to break open the configuration to get at
the action variables anyway to display action information.

The initial design of the CLA will send one configuration at a time to the PSA. The CLA will break the configu-
rations into principal system configurations and then into parts. The CLL will send the parts one at a time to a
PSA and await the action response before going on. Sending an entire principal system configuration might be
faster, but it would be somewhat more complex. As a first pass, we choose simplicity over speed. Using the PSA
this way is something that we will examine during prototyping.

•

The communication between a PSA and its PS will generally be EPICS channel access, but the
PSA concept allows the OCS design to deal with unusual systems if it needs to. This may be useful in the future
when visitor instruments come to the telescopes. A visitor instrument would modify a PSA to communicate with
their peculiar system.
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•

The EPICS system is value based but determining completion based on values in clients is a bad
software design. Our system uses action variables to determine when actions complete. It must be possible to tie
actions to commands to allow sequencing of our systems by the OCS. The PSA action protocol allows the OCS
to control the other principal systems more reliably because it allows the OCS to determine when actions are
modified during execution. Using the PSA action variable protocol, if clients are not notified during execution,
they can rely on the results of successfully completed actions.

It should be noted that the entire action variable method relies on principal systems performing the actions they
are requested and only returning to IDLE when they have successfully done what they were requested to do.



The Planned Observing Support Track is one of the development tracks in the development plan for the
Observatory Control System (OCS) of the Gemini Telescope. The following statements are from the Soft-
ware Design Review OCS Development Plan [4].

This second phase of infrastructure adds the functionality required for the planned observing modes.
The majority of the Configurable Control System is developed here including the Observing Data-
base, and the various processes and structures required to use Science Programs and the Observing
Tool. (page 3).

These two phases must be completed before automatic control of the telescope configuration is pos-
sible. This functionality is required for the operational phase planned observing capabilities (page
7).

The Planned Observing Support (POS) track is primarily the development of the Configurable Control Sys-
tem. This track must provide the software support that will allow the GCS to be used effectively in the
planned observing modes. The products of the POS include infrastructure-related applications and libraries
as well as operator applications that are part of the visible user interface.

This report presents the preliminary design of the POS track to a depth such that the track can continue on in
its development independently of the other OCS tracks. The following information is contained in this
report.

• A high-level preliminary design for the track.

• The message/event flow between applications in the POS track and the other OCS tracks.

• The message/event flow between applications in the POS track and the other principal systems.

• A list of the known POS products.

• Remaining decisions for the detailed design of the track.



API Application Programmer Interface

CLL Command Layer Library

EC Executor Controller

GUI Graphical User Interface

IOI Interactive Observing Infrastructure

OCS Observatory Control System

ODB Observing Database

OT Observing Tool

PD Preliminary Design

POS Planned Observing Support

PS Principal System

PSA Principal System Agent

SAD Status Alarm Database

SE Sequence Executor

SIR Status Information Record

SM Session Manager
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Final PDR Release — 27 September, 1995.

The following design studies or trade studies were specified during the OCS SDR to be done during the POS
track.

Observing Database. A study will be required to examine the OCS requirements for the non-EPICS parts
of the run-time Observing Database and the external database. A study will be required to examine the
requirements and choose an implementation. The study must discuss the relationship between the Observing
Database and the external database that is part of the DHS.

Possible Benefits of Multi-processors. Two multiprocessor Sparcstations have been purchased for use dur-
ing the development of the OCS and for eventual site use. A study/report will be done to summarize and
make recommendations for multi-processor machine use in the Gemini Control System.

Remote Monitoring Requirements. The prototype remote monitoring interface describes a system that
allows remote observers to view live video and scanned images. Sound transmission capability between the
sites and remote observers is also suggested. A study must be done to determine which (if any) commercial
product can be used to provide these capabilities. The result will be a recommendation for a product or a rec-
ommendation to limit this capability.

No other studies or reports are required for this track at this time.

The Planned Observing Support track is developed around the concept of an Observing Session. An Observ-
ing Session corresponds naturally with the activities that must take place at the telescope in order to accom-
plish an observing run. Support for both Observing Tool Interactive Observing and all the Planned
Observing modes is developed in this track.

A Session is created when an observer (staff or otherwise) wishes to execute a set of observations, or observ-
ing plan (or just plan). The Session is associated with a set of system resources that are available to the
observer’s observations. These will include the telescope beam and four instruments at a minimum, but we
use the term “resource” in a generic sense to promote a general design.

A system operator at the telescope site manages the creation of Sessions and is in control of allocating
resources using the Session Manager (SM) application. Observers will contact the SM with their Observing
Tool (OT) to start a Session or to monitor an existing Session. The operator can accept or reject this request,
and is in charge of assigning the observer to a particular Session. Only one observer, the blessed observer,
can actually execute an observation with the OT. Other participants assigned to the same session simply
monitor run-time information.

Each Session is associated with a single observing plan. The plan details the sequence of observations to be
executed and is constructed and modified with the OT. Observing plans are stored in the Observing Data-



base, and their representation is reflected in the GUI presented to the SM operator. The execution of an
observing plan is controlled through the OT, but ultimately verified or accepted by the system operator sit-
ting at the SM console.

To execute an observation, the SM uses a Sequence Executor (SE) application. Its job is to interpret the
information in the observation and send the appropriate sequence commands to the various principal sys-
tems. It also records header information in the ODB and is in charge of monitoring completion after an
apply sequence command.

The high-level physical model introduced in the next section captures and expands upon these concepts.

The layered physical model of the OCS is introduced in [6]. This track document also uses the Object Mod-
elling Technique of Rumbaugh [8] to present the design of this track. The notation used in the diagrams is
not explained here, see [8] or [6] for definitions.

The POS track is modelled as a group of OCSApp instances that cooperate to provide the functionality of the
track. This preliminary design document is not focused on the design of the individual applications that
make up the track; rather, it is focused on identifying the applications required to provide the functionality
and showing how the applications cooperate. The following approach is used to achieve this.

Build an object model of OCSApp instances for the POS track.

Identify and describe the methods that each application must respond to for the functional model.

Examine the dynamic operation of the entire system using scenarios/use cases, object interaction dia-
grams, and event trace diagrams.

The PDR design is concerned with the external interface for each of the POS applications. The internal
design of each application or application type is left for the detailed design of the track; however, the last
sections of this paper present the detailed design work that was required in order to complete this document.

The first step above, developing the object model of OCSApp instances, is handled in this section. The
remaining sections cover the other points. However since the Session idea drives the design, we begin by
examining its structure in more detail.

The Session concept is modelled as an association of participants (observers), resources, and plans
(Figure 1). More than one observer can participate in a session, but a single blessed observer controls the
observation plan execution at any one time. The remaining observers just monitor the run-time information
provided by the SM. The blessed observer is viewed as a special kind of monitoring participant.



The Session Object

There is a one-to-one association of Sessions with Plans. Plans are composed of observations, most of which
will just be links to observations in Science Programs. The observations in a plan fall into three categories,
Completed, Executing, and Next. Completed observations have finished executing and Next observations are
ahead in the queue. Both Completed and Next observations are ordered, though the arrangement of upcom-
ing observations can be changed with the blessed observer’s OT. Executing observations are associated with
a subset of the resources belonging to the session. More than one observation in a given session may be exe-
cuting concurrently, provided that the observations use disjoint sets of resources.

The associations between the Observing Tool, Session Manager, Observing Database, and Sequence Execu-
tor are indicated in Figure 2 below. The POS Track consists of the SM, SE, and ODB. The OT application is
required for planned observing as well, but it is developed separately in the Observing Tool Track [7].

POS applications and their interactions

The SM receives connection requests from one or more Observing Tools, and instructions from the blessed
observer’s OT. It sends run-time status information back to all the participants. Both the SM and OT examine
the same observation plan in the ODB, and the OT is charged with creating and modifying the plan.

Monitoring
Participant

Blessed
Participant Observation

Plan

Science
Program

Resource

Session

{ordered}{ordered}

Completed Next Executing

Observing Tool

Session Manager Observing Database

Sequence Executor

Principal System

Planned Observing Support Track



Sequence Executors are allocated by the SM to execute observations. They receive start/pause/continue/
abort commands from the SM and return status information to be relayed to the participants. The observation
that they execute is read from the ODB, and header information is stored back to the ODB as well.

The diagram shows a direct connection between the SE and the Principal Systems, though the connection
goes through the Principal System Agent of the IOI track [2].

The POS architecture is modelled as a set of cooperating OCSApp instances. This section takes a closer look
at the responsibilities and tasks of each of the components of the architecture described in the previous sec-
tion. The following section details the public interface for each of the components.

The Session Manager (SM) is the central coordinator of the automated operations of the POS. The visible
user interface of the SM is one of the important operator interfaces. The following are the functions and tasks
of the SM given our design.

Session Management. The SM provides the operator with the ability to create and destroy observing ses-
sions.

• The SM allows the user to associate a plan with a session.

• The SM keeps a record of its operation during observing sessions.

• The SM allows the operator to control the Observing Tool monitoring of the observations in sessions.

Connection Management. The SM allows users to participate in observing sessions. A user associated with
an observing session is called a participant.

• The SM must support software connection requests from Observing Tools. The SM and its GUI must
notify the operator of connection requests and allow him to accept or reject requests.

• The SM must allow the operator to assign one or more participants to an observing session.

• Each session must have one participant who is has the capability of interacting with the session and rear-
ranging the plan. Others can only watch. The SM allows the operator to determine which participant is
blessed, and to change a session’s blessed participant while the session is executing.

Resource Management. The operator is the sole owner of all the resources in the GCS. The operator makes
decisions to share his resources with observations executing in sessions. Through his actions observations
gain access to all the shared observatory resources they need to run.

• The SM supports the operator by allowing him to determine which observing sessions have access to the
resources of the system.

• The SM allows resources to be dedicated to sessions for long periods of time.

• The SM controls access to the principal system resources.

Session Information Management. All Observing Tools involved in run-time control or monitoring of
observations are connected to the OCS through the SM. Consequently, the SM knows all of the participants
connected to the observatory and the associations between participants and sessions.

• Status information generated by the executing observations can be routed to all of a session’s participants.
This status information appears in the run-time OT display.



• Status information created while managing the session can be forwarded to participants. This kind of
information indicates when observations have started and ended and when they have entered or completed
various recipe phases.

• The operator can send messages to one or more participants in a session.

• Any video or sound transmission will use the SM participant information. However, sound or video infor-
mation would probably not be routed through the SM. This is a design decision for the future.

Session Observation Execution. Multiple observations can be executing in a single session if the sets of
resources they require are disjoint. Multiple sessions can also operate concurrently.

• A Sequence Executor is a process with the job of executing a single observation. The Session Manager
starts, monitors, and kills Sequence Executors as required by the contents of the session’s observing plan
and the session’s execution policy.

• The SM execution policy (the Session Manager Recipe) determines when and how observations can be
executed in a session. Examples are one observation at-a-time, one observation after another automati-
cally, or execute as many observations concurrently as are possible. The SM allows the operator to config-
ure the sessions observation execution recipe.

System Integration Features. The SM is the primary Operator user interface for planned observing and it
supports a number of integration features for the operator’s use.

• The operator can configure his console screens to display TCS information for any of the observations in
the session.

• The operator can configure the SM execution policy to require his intervention before any observation will
be executed. This supports the OCS requirement that the operator be the one individual responsible for
hardware control.

The Sequence Executor (SE) is a subsystem with the job of executing a single observation. To accomplish
this fairly complex job it has a number of capabilities and responsibilities.

Session Commands. The SE must accept and respond to commands to control its operation.

• An observation can be assigned to an SE for execution.

• A caller can send commands to start, stop, abort, pause, and continue an observation. These terms have the
typical Gemini definitions.

• The SE associates a recipe with the execution of an observation. The recipe describes the sequence and
interactions of an observing pattern.

Resource Use. The SE is charged with acquiring the resources an observation needs before it can execute.

• The SE examines an observation for resources.

• The SE requests resources from the SM and relinquishes them according to its recipe and/or the desire of
the observer as specified in the attributes of the observation.

Status Use and Generation. The SE must make the system aware of its state. It also has several status-
related responsibilities during the execution of an observation.

• The SE publishes status information describing its operations and state for the Session Manager and the
GCS.

• The SE generates status information for the OT run-time display and forwards the information to the Ses-
sion Manager.



• The SE can take snapshots of status information during observation execution and store the status data
with the observation in the ODB.

• The SE sends observation status data required for the data headers to the DHS once the observation is
completed.

• The SE watches for changes to important observation status information during Verify/EndVerify
sequence commands. It notifies participants of changes through the Session Manager and then updates the
observation in the ODB if needed.

• An SE can monitor an observation’s configuration for changes while the observation is executing. It can
post alarms if some parameters change when they shouldn’t.

System Interactions. The SE is an active component in the GCS and must interact with other systems.

• The SE interacts with the GCS systems using sequence commands.

• The SE interacts with the ODB to fetch and store information associated with its observation.

• The SE interacts with the DHS when it sends it header-related status information at the conclusion of an
observation.

The Observing Database (ODB) is the persistent repository of all information associated with Science Pro-
grams, Observing Plans, Observations, components of Observations. When the POS is in run-time use sup-
porting the planned observing modes, the ODB provides several functions.

• The ODB responds to changes in Science Programs and Observing Plans related to operations performed
by observers using the Observing Tool.

• The ODB can receive updates to observations from the Sequence Executors while an observation is exe-
cuting.

• The ODB receives updates from the Session Manager related to session operations and changes.

• The ODB must ensure that the views of open Plans, Science Programs, and Observations in Observing
Tools remain consistent in response to changes by the “blessed” participant.

Figure 3 shows an expanded Figure 2 that includes the public methods for each of the OCSApp components
of the POS. The public methods are the methods that an application allows other applications to execute. The
expanded object model shows the external database is used by the ODB, but OCS applications interact only
with the ODB.

In the object models showing methods, + and - are used to indicate that a method is public or private. In this
document private means the method is only available to classes inside an application instance. Public means
that the method can be called by other applications to cause actions.

Figure 4 shows the important POS document data types and the associations between the documents and
data. The detailed composition of the Observation is not shown.

• An Observing Plan can reference many Science Programs and a Science Program can be referenced by
many Plans.

• An Observing Plan can also contain Observation objects. For instance, an on-site observer will include
calibration observations which don’t appear in any one user’s Science Program. The ability for an Obser-



vation to appear in many Plans has been included even though it may be undesirable rather than enforcing
a constraint at this time.

• Associated with each Observation object is a number of DataFile objects. These DataFiles contain the
OCS data to tie the observations in a Science Program to the actual data in the DHS. The actual data is
modelled as references to the external database.

• The Recipe Database is used by the POS applications. It contains the Session Recipes and the Sequence
Executor Recipes. These recipes are derived from the imported File type meaning that these files will be
text-based scripts that simply stored in the database

Figure 4 also shows that the Science Program object can be associated with a file. The Science Program
object must be able to store itself to a traditional file and to build itself from a previously stored Science Pro-
gram file. The goal is that the file will be text based.

The methods of the application classes in Figure 3 in addition to the data object methods in Figure 4 com-
prise the public interface for the POS. In addition, the Session Manager application will use the methods
listed below to implement its GUI functionality. Though they are private to the SM, they are useful in dem-
onstrating how the operator interacts with the SM.

• Managing Sessions (Figure 20 on page 26, Table 8 on page 27)

-addSession(name, session) -getSessions()

-getSession(name) -removeSession(name)

• Executing a Session (Figure 21 on page 27, Table 8 on page 27)

-setSessionRecipe(name) -abortSession()

-getSessionRecipe() -pauseSession()

-startSession() -continueSession()

-stopSession()

• Interacting with a Session (Figure 21 on page 27, Table 8 on page 27)

+sendToAllParticipants(message) -getParticipants()

-addParticipant(participant) -addResource(resource)

-removeParticipant(participant) -removeResource(resource)

-getBlessedParticipant() -getResourceList()

-setBlessedParticipant(participant)

• Managing Participant Access (Figure 22 on page 30, Table 8 on page 27)

-connectionRequest(participantName) -getParticipantConnInfo(participant)

-connectionAccept(session, participant) -getParticipantByName(participantName)

-connectionReject()

• Managing Resources (Figure 23 on page 31, Table 8 on page 27)

-shareResource(resName, session) -unshareResource(resName)

These methods are used to demonstrate the dynamic behavior of the POS in upcoming sections.



POS Applications Showing Public Methods

Observing Tool

Principal System

+setObs(ObsName)

+getObs()
+setRecipe(RecipeName)
+getRecipe()

Sequence
Executor

+getName()

+getName()
+start()
+stop()
+pause()
+continue()
+abort()

Observing Database

+getPlan(name)
+addPlan(name)
+removePlan(name)
+queryPlans(“query form”)
+getProg(name)
+addProg(name)
+removeProg(name)
+queryProgs(“query form”)
+getObs(name)
+addObs(name)
+removeObs(name)
+queryObs(“query form”)
+getDataFile(name)
+addFile(name)
+removeFile(name)
+queryFiles(“query form”)
+getRecipe(name)
+addRecipe(name)
+removeRecipe(name)
+queryRecipes(“query form”)

External Database

Session Manager

+connectionRequest(name)
+sendToAllParticipants(message)
+setPlan(name)

+removePlan()
+resouceRequest(name)

POS Subsystem

+planUpdated()

+startObs(observation)
+stopObs(observation)
+abortObs(observation)
+pauseObs(observation)
+continueObs(observation)



POS Data Associations

Some very preliminary work has been done on the Session Manager user interface and that work is shown in
Figure 5 in order to help readers visualize what we have in mind. This screen shot is just a demo and has
received very little work; the design of the GUI is guaranteed to change. The screen was done using Tk and
ESO’s Panel Editor.

The figure shows two horizontally displayed sessions. Along the x axis is the time and a vertical line passes
through the sessions showing the current time. In Session 1, Observation 25 is completed and Observation
26 is ready to run. In Session 2, Observation 22 is executing. As time increases, the session display scrolls to
the right providing a history of what has happened at the telescope.

The resources for each session are shown next to the sessions. Session 1 only uses Port 3 (ports were used as
resources although we would rather refer to instruments). Session 2 uses Port 2 and the telescope beam
resource. The operator shares resources by dragging icons from the Resource Pool on the left on to the Ses-
sion.

Observation

+getResourceList()
+getComponentList()
+addComp(Comp)
+removeComp(Comp)

Plan

+getNextObs(afterObs)
+getObsList()
+addObs(Obs)
+linkObs(Obs)
+removeObs(Obs)

ScienceDataHeaderInfo

DataFile

+getScienceData()
+getHeader()

ExternalDBLinkExternalDBLink

OCSData

-getOCSData()

Science Program

+getCompList()
+addObs(Obs)
+linkObs(Obs)
+removeObs(Obs)

+getObsList()

Contains/Links To

Links To/Contains

Links To

Consists Of

Owns

File:Imported

Science Program
File

+useFile(name)
+writeFile(name)

+getProgram()

#ScienceProgram



The operator can view the details of an observation by selecting one of the observations. The figure shows
Observation 22 selected. The sample display on the left shows that the observation has 20 minutes left and
some additional information.

The Very Primitive Session Manager Prototype

This is the method the operator will use to evaluate and authorize an observation for execution when needed.
In the prototype, he selects a Observation 22 and presses view. This causes the operator’s telescope consoles
to display the values associated with Observation. He presses accept to allow the observation to continue.
This is just one approach to session management there will be others. The prototype shows a button that
allows the operator to accept all observations in the Session without needing his intervention.

The model for the Session Manager is to be split into two parts: a Session Manager GUI, and a Session Man-
ager Server. The Session Manager Server will be located in the Configurable Control System. The Session
Manager GUI will be executed from the operator’s machine. The two components have been split so that the
Session Manager will be available at all times. The project processor allocation calls for a single dedicated
Sun machine at each site for the Configurable Control System.

The following tables give a brief description of the public methods available in each of the POS application
types.



Public Methods for Class Session Manager

Public Methods for Class Observing Database

Method Use

connectionRequest(Name) The Observing Tool contacts the Session Manager using this
method when an observer wishes to participate in a session. The
Session Manager operator is notified and either accepts or rejects
the connection.

sendToAllParticipants (Message) Sends a message, such as a status update, to all participants in the
session.

setPlan (Name) Associate the named observing plan with the session. If there is
already a plan associated with the session, then it is forgotten in
favour of the new plan.

planUpdated() Informs a session that its plan has been modified in the ODB.

removePlan() No longer associate a plan with the session.

resourceRequest (Name) The Sequence Executor uses this method to request a resource. If
the session does not already have access to the resource, the sys-
tem operator is notified.

startObs(observation) Start an observation in a session, subject to the approval of the sys-
tem operator.

stopObs(observation) Stop an executing observation.

abortObs(observation) Abort an executing observation.

pauseObs(observation) Pause an executing observation.

continueObs(observation) Continue an executing observation.

Method Use

getPlan(name): Plan A reference to an Observing Plan object associated with name is
returned.

addPlan(name) This method adds Plan name to the Plan Database.

removePlan(name):Plan This method removes the Plan name from the Plan Database and
returns a reference to it.

queryPlans(“Query form”):PlanList This method is used to select a subset of Plans from the Plan Data-
base. The query results in a list of Plans.

getProg(name): ScienceProgram A reference to a ScienceProgram object associated with name is
returned.

addProg(name) This method adds ScienceProgram name to the Science Program
Database.

removeProg(name):ScienceProgram This method removes the ScienceProgram name from the Science
Program Database and returns a reference to it.

queryProgs(“Query form”):
ScienceProgramList

This method is used to select a subset of SciencePrograms from
the Science Program Database. The query results in a list of Scien-
cePrograms.

getObs(name): Observation A reference to an Observation object associated with name is
returned.

addObs(name) This method adds Observation name to the Observation Database.

removeObs(name):Observation This method removes the Observation name from the Observation
Database and returns a reference to it.



Public Methods for Class Sequence Executor

The ODB public interface can be used to acquire data objects. The method interface for the data object is
then used to access and manipulate the data object state. The following tables give a brief description of the
data object methods.

queryObss(“Query form”):ObservationList This method is used to select a subset of Observations from the
Observation Database. The query results in a list of Observations.

getDataFile(name): DataFile A reference to a DataFile object associated with name is returned.

addFile(name) This method adds DataFile name to the Data Database.

removeFile(name):DataFile This method removes the DataFile name from the Data Database
and returns a reference to it.

queryData(“Query form”):DataFileList This method is used to select a subset of DataFiles from the Data
Database. The query results in a list of DataFiles.

getRecipe(name): Recipe A reference to a Recipe object associated with name is returned.

addRecipe(name) This method adds Recipe name to the Recipe Database.

removeRecipe(name):Recipe This method removes the Recipe name from the Recipe Database
and returns a reference to it.

queryRecipes(“Query form”):RecipeList This method is used to select a subset of Recipes from the Recipe
Database. The query results in a list of Recipes.

Method Use

setObs(obsName) This method allows the caller to set the Observation that will be
executed by the SE. The name of the observation is a character
string.

getName(): Name This method returns the name of the observation associated with
the SE.

getObs(): Observation This method returns the Observation object associated with the
Sequence Executor instance.

setRecipe(recipeName): This method allows the caller to set the Recipe that will be used to
execute the observation. The name of the Recipe is a character
string.

getRecipe():recipeName This method returns the name of the recipe associated with the SE.

getName(): Name This public method returns the name of the recipe.

start() This public method starts the execution of the observation.

stop() This public method stops the execution of the observation at the
next appropriate time.

pause() This public method pauses the execution of the observation if it is
executing.

continue() This public method continues the execution of the observation if it
is paused.

abort() This public method causes an observation to terminate immedi-
ately.

Method Use



Plan Class Methods

Science Program Class Methods

Methods for Observation Class

Methods for Class DataFile

Method Use

getNextObs(afterObs):ObservationList This method returns a list of unexecuted Observations in a Plan.

getObsList(): ObsList This method returns a list of all the Observation objects in a Plan.

getCompList(): CompList This method returns a list of all the Component SPItems in a Plan.

addObs(Obs) This method adds an Observation object to a Plan.

linkObs(Obs) An Observation object in a Science Program can be linked to a
Plan using this method.

removeObs(Obs):Observation An Observation is removed from a Plan using this method.

Method Use

getObsList(): ObsList This method returns a list of all the Observation objects in a Sci-
ence Program.

getCompList(): CompList This method returns a list of all the Component SPItems in a Sci-
ence Program.

addObs(Obs) This method adds an Observation object to a Science Program.

linkObs(Obs) An Observation object in another Science Program or a Plan can
be linked to a Science Program using this method.

removeObs(Obs):Obs An Observation is removed from a Science Program using this
method.

Method Use

getProgram():ScienceProgram Return the Science Program or Plan owner of the Observation.

getResourceList(): ResourceList This method returns a list of all the Resources required by an
Observation.

getCompList(): CompList This method returns a list of all the Component SPItems in an
Observation.

addComp(Comp) This method adds a Component to an Observation.

removeComp(Comp):Comp A Component is removed from the Observation and returned to the
caller.

Method Use

getOCSData(): OCSData Each DataFile in the Data Database is associated with some data
used by the OCS. This method returns that data.

getScienceData(): ScienceData This method returns the ScienceData object associated with a
DataFile.

getHeaderInfo(): HeaderInfo This method returns the HeaderInfo object associated with a Data-
File.



The functional interface for the application types can now be used to demonstrate the behaviour of the POS
track under a number of typical scenarios. The following examples show how the design handles some typi-
cal use cases and scenarios. A use case is a simple task users will need to execute with the software system.
A scenario is usually larger than a use case and can include several use cases in its description. Some scenar-
ios will consist of text-based steps when the interactions are outside this track or covered in other track doc-
uments. The labels for each example below is CX for Case X.

Background. An observer wishes to begin observing. He starts the Observing Tool and makes a connection
request to the Session Manager using the GUI.

Scenario. An Event Diagram is shown in Figure 6. The OT makes the connection request to the known loca-
tion of the Session Manager. The operator is prompted and must take an action as a result of the request. He
uses the GUI to create a new Session object. The default Session Recipe is assigned to the new session. The
operator assigns the participant to the new session and since he is the first participant he is blessed. The OT is
notified of his acceptance.

Connection Event Diagram

Background. An remote observer wishes to join a session to monitor his observation. He starts the Observing
Tool and makes a connection request to the Session Manager using the GUI.

Scenario. An Event Diagram is shown in Figure 7. The OT makes the connection request to the known loca-
tion of the Session Manager. The operator is prompted and must take an action as a result of the request. He
accepts the request and assigns the observer to a session. The OT is notified of his acceptance. He is not
blessed.

Observing Tool Session Manager

connectionRequest()

setSessionRecipe()

Operator

operator notified

new Session

connectionAccept()

connectionAccept()

setBlessedParticipant()



Joining an ongoing session

Background. Once the connection is accepted, the blessed observer can set the Plan that will be examined for
observations.

Scenario. Opening the Plan in the Observing Tool causes the name of the plan to be associated with the ses-
sion. The Session Manager gets the Plan object from the ODB.

Setting the Plan

Background. The Session Manager looks in the shared Plan document in the ODB to find the next observa-
tions.

Scenario. A list, in the observer’s order, is returned to the Session manager when the getNextObs() method
is sent to the Plan object. This is also how the Session Manager notices additions to and changes in the
ordering of the Plan.

Getting the Next Observations

Background. The Session Manager must be able to determine what resources an Observation uses. The SM
does this by querring the next Observation in the Plan. It can then use the Resource List for the Observation.

Scenario. The Observation object is obtained from the ODB and examined for resources.

Observing Tool Session Manager

connectionRequest()

Operator

operator notified

connectionAccept()
connectionAccept()

Observing Tool Session Manager

setPlan()

ODB

getPlan()

Session Manager Plan Object

getNextObs()

An Observation List



Checking for Resources

Background. An Observation must have at least one of its Resources before it makes sense for it to start exe-
cuting. The Session Manager compares the list of Resources required by the Observation to the list already
shared with the Session. If the Session needs additional Resources, the operator must intervene.

Scenario. The Observation resource list is compared with the Session resource list. The operator uses the
Session Manager GUI to share his resources with the Session.

Sharing a Resource with a Session

Background. The Session Manager gets the first observation from the Plan that is ready to execute (the
observer marked them as ready). The Session Recipe is simple. The operator must select an Observation in
the Session and run it (no automatic execution in this session).

Scenario. For this scenario the Operator has already allocated all the Resources to the Session the Observa-
tion needs as in the previous two cases. The Session Manager starts a new Executor, initializes it, and starts
the Recipe. The operator can specify his own Recipe if he needs to or the Observation might have a Recipe
attribute.

Session Manager ODB

getObs()

Observation

getResourceList()

Resource List

Operator Session Manager

getResourceList()

Session

getResourceList()

Resource List

compare

Observation

Resource List

operator notified
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Starting a Session

The normal interactions of the Sequence Executor and the principal systems is covered in the IOI track doc-
umentation and need not be repeated here. During the execution of the recipe, the SE sends Sequence Com-
mands to the principal systems.

However, there are several things the OCS must do during planned observing to support the instruments.

Background. All the status values that can be included in an Observation’s header are present in the Status/
Alarm Database. The design calls for the ability to add data to the headers (beyond the required default val-
ues) at run-time. A GUI will display all the status values associated with a component and allow the observer
to indicate that a status value should be sampled just before OBSERVE or as soon as OBSERVE completes.
The SE must snapshot the header data and save it with the observation in the ODB.

Scenario. The extraction of the snapshot information is done internally in the Sequence Executor. A new
component is added to the Observation with a known name (“snapshot1”).

Checking for Resources

Background. The Session Manager is charged with keeping the OT run-time status display up-to-date. Since
the OT may be remote a packet of vital information is packaged up by the SE and forwarded to the Session
Manager (rather than relying upon CLL monitoring) where it is forwarded to all the Session’s participants.

Scenario. Every so often, as specified by the Recipe, the status is packaged up by the Sequence Executor
using information in the Observation components. The information is forwarded to the SE’s parent Session
and forwarded to all the participants.

Session Manager

setRecipe()

Sequence Executor

create Executor

setObs()

start()

Operator

Sequence Executor Observation

addComp()

snapshot SAD



Posting Status to Participants

Background. The SE must notify the operator if any important part of the system’s configuration is mistak-
enly altered during the time the Science Data is being acquired. The point of this case is to show that the SE
will provide this capability.

Scenario. This case is taken care of by the SE Recipe using data from the Observation components. The SE
monitors important CAR variables that are included in an Observation Component specified for this purpose.
If one of these CAR variables is modified during the time the science data is being acquired the SE will post
an alarm to notify the operator.

Background. A previous case showed how the SE snapshots SIR data during observation execution. The
SDD calls for the OCS to send the snapshot data, the header data, to the DHS as an argument to the ENDOB-
SERVE command.

Scenario. Sending Sequence Commands is discussed in the IOI track documentation. The SE will send the
snapshot data stored in the Observation object to the DHS at the appropriate time in the recipe. The DHS
will handle the ENDOBSERVE command and write the data headers.

Background. This case is to show how the Session Manager session view stays up to date when the blessed
observer updates the session Plan or Science Program by dropping into the Plan an Observation from another
observer’s Science Program (for instance, an observation for queue observing).

Scenario. The modification to Plan causes the Observation in the Science Program to be linked to the ses-
sion’s Plan as shown in Figure 15. In the current design, when a connected, blessed OT updates the Plan, the
OT sends a planUpdated() message to the Session Manager. This causes the Session Manager to check the
plan. A list, in the observer’s order, is returned to the Session Manager when the getNextObs() method is
sent to the Plan. This is shown in Figure 16.

The chosen ODB product may provide an event notification capability. In this case, the database will keep
the data consistent for all the clients using the data making the planUpdated() method unneeded.

Sequence Executor Session

package up status

notify each OT

sendToAllParticipants()

Observing Tool



Adding an Observation in a Science Program to a Plan

Getting the Next Observations after an update

Background. Some Observations will also be created in Plans and shared with some of the Science Programs
which have Observations in the Plan. The observer will select Observations in the Plan and share the new
Observation.

Scenario. Plans and Science Programs can contain links to Observations in other Science Programs or the
Observation objects themselves. (Actually, all may be implemented as links if all Observations are in the
Observation Database in the ODB. The links/actual object distinction has more to do with ownership of an
Observation than implementation.) In this case, links to the new Observation must be created in a number of
associated Science Programs. Then, the Session view must then be updated as in previous cases.

Updating a number of Observations

Plan ObjectObserving Tool

drop in Observation’

linkObs(Observation’)

Session Manager Plan Object

getNextObs()
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modify plan
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Background. The OCS requirements [3] state that the operator must be responsible for all telescope motions.
In some session recipes it will be necessary for the operator to examine the contents of the Observation
before he allows it to execute. This case shows how this works in the POS track.

Scenario. An Observation in a Session is next and the Operator wants to look at it. He will select the repre-
sentation of the observation in the Session Manager GUI and select a view command. This will cause status
to be sent out from the Session Manager and any console configured to monitor the value of the “view obser-
vation” will see the change and respond by reading the Observation data and displaying it.

These scenarios have shown many of the important operations of the POS. Some issues, such as concurrency
in SEs or multiple SEs in a session, have been ignored but as far as we can tell they are just extensions of the
given scenarios. Without a tool to develop pictures the work to do these scenarios is overwhelming. More
scenarios will be produced as part of the detailed design of the track.

The POS track applications are OCSApp instances and rely upon the software interfaces provided by the IOI
track CLL, primarily the OCS Message System interface.

The format of the messages is not known at this time. The preliminary content of the messages is specified in
the public interfaces for each kind of OCSApp in the Functional Model section of this paper.

The Planned Observing Support along with the Interactive Observing Infrastructure track provide essentially
all the observing infrastructure for the GCS. However, the POS provides its infrastructure as applications
rather than libraries and relies upon the availability of the IOI track products. The entire OCS development
plan is discussed elsewhere [3].

The POS track is scheduled for a year of time in the WBS. The POS development plan will be phased to
allow maximum OCS track parallelism. The POS products will be released in alpha and beta form before the
entire POS track is completed so that work on the Observing Tool track can continue to progress in its own
track. The POS releases will be timed with OT releases if possible. There may be multiple alpha and beta
releases of POS and OT and then Final Release as specified in the OCS development plan.



POS Track Delivery

The quality of a graphical user interface is generally better when the users of a product are involved in its
development. However, the final users of the user interface products of the POS track (primarily the Session
Manager), the telescope operators, will not be available for user involvement and testing. The usability test-
ing approach for the POS track is the same as that used in the Telescope Control Console Track [9].

The documentation for the POS track will follow the documentation requirements in the OCS SDR docu-
ments (SR66, SR67, SR68).

The Observing Database will be released with the following documentation for the components not related
to EPICS status. The EPICS portions are covered in the IOI track documentation.

The ODB Technical Document. This document describes how the ODB data is structured, and the kinds of
operations that are available.

The ODB Programmer’s Document. This document describes how software components in the POS and
the OT use the ODB. The software interface will be described here in case other future products wish to use
the ODB.

The ODB Testing Manual. This manual will describe how to use the testing procedures required for the
acceptance tests of the ODB.

Alpha
OT

Alpha
POS

Beta
POS

POS Track OT Track

Products

Beta
OT

Products



The Session Manager will be accompanied by a technical design document and a user manual for the GUI.

The Session Manager Operator Manual. This manual will provide an overview of the control planned
observing using the Session Manager GUI.

The Session Manager Technical Document. This document describes how the Session Manager software
works and the software interfaces its components provide.

The Sequence Executor code will be accompanied by a technical document.

The Sequence Executor Technical Document. This document describes how the Sequence Executor soft-
ware works and the software interfaces its components provide. This document will be used by the creators
of stand-alone consoles to add the ability to execute observations.

The following items are the deliverables of the final release of the POS track.

• Session Manager server and GUI

• Sequence Executor and associated code

• Observing Database

• Documentation described previously and in the development plan



Section 8.0 described a high-level view of the POS by presenting the public methods for each of the track
products. This section builds the physical model for each of the track products showing the high-level com-
ponents of each product and the interactions between the components. Additional private methods are pre-
sented along with additional details on the structuring of the POS data.

The Session Manager depicted in Figure 2 on page 5 is decomposed and explored in further detail in this
section. The Session Manager application has evolved around the natural concept of the Observing Session.
It is responsible for creating and controlling sessions, managing resource allocation, and directing run-time
information to observers. The SM model is comprised of several subsystems and a Session Administrator as
indicated in Figure 19. The Observing Tool, Observing Database, and Sequence Executor are also shown to
demonstrate how the SM fits in with other OCSApps. The Session Administrator creates and destroys Ses-
sion Subsystems, and each subsystem fulfils a distinct task as indicated below.

Session Subsystem. This subsystem is the heart of the Session Manager. A new Session Subsystem is cre-
ated for each session, and it relates the remaining subsystems.

Access Subsystem. Access to the Session Manager is handled here.

Resource Subsystem. Resources are allocated to sessions using the functionality of this subsystem.



Session Manager

The Session Administrator and the subsystems are detailed in the remaining sections.

The Session Administrator presents an interface to the SM GUI that is used by the system operator to create
and destroy the objects in the Session Subsystem (see Figure 20). A few simple methods are indicated in the
figure and discussed in Table 8. Any number of sessions may exist concurrently, although it is expected that
the most common case will be a single session. When a session is created, Session Recipe and Session
objects are instantiated as discussed in the next section.
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The Session Administrator creates a Session Recipe and Session object for each session as shown in
Figure 21. The Session Recipe object controls the execution of the session itself. Sessions can be handled by
the SM in several ways. For instance, they can be executed in “automatic” mode wherein each observation in
the plan is started as soon as the resources become available, or the system operator may desire to explicitly
check each observation before it is executed. The Session Recipe is set by the operator to control the session
as a whole and contains methods to start/stop/pause/continue the session.

Session Subsystem

The Session is the central object of the entire SM application. It links together the functionality of all the
subsystems and coordinates the session’s interactions with the Observing Tool, Sequence Executor, and
Observing Database. In particular it handles the following tasks for the session:

Session Administrator Methods

Method Use

addSession(name, session) This method adds a new session to the pool of sessions being
administered by the Session Administrator.

getSession(name): Session Returns the session with the given name.

getSessions(): SessionList Returns a list of all the sessions.

removeSession(name) This method removes the named session from pool of sessions
being administered by the Session Administrator.
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• Interactions with participants.

— The Sequence Executor and the SM itself generate status that must be reflected to the participants. The
Session object relays this information to the proper Observing Tools.

— The system operator uses a method in the Session object to set the “blessed” participant and grant per-
mission to his Observing Tool to modify the plan.

— The blessed observer contacts the Session object to set the plan that the SM executes.

• Resource allocation for the session. Before a sequence executor can execute an observation, it must first
obtain the resources it needs from the Session object. If the resources have been allocated to the session by
the system operator, and if they are not in use, then the Session grants the resources. If a resource has not
been allocated, the system operator is contacted to request it.

• Control of the execution of objects in the session. The Session contains methods used by the Session
Recipe and other applications to start/stop/pause/continue/abort its observations.

The Session object also provides methods used by the Access Subsystem to add/remove participants, and by
the Resource Subsystem to add/remove resources. All the methods are detailed below.

Session Methods

Method Use

sendToAllParticipants(message) Sends a message, such as a status update, to all participants in the
session.

addParticipant(participant) Add a monitoring participant to the session. This method is
invoked by the system operator in response to a connection request
from an OT.

removeParticipant(participant) Remove a participant from the session.

getBlessedParticipant(): Participant Determine who the blessed participant is.

setBlessedParticipant(participant) Set the blessed participant. If there is already a blessed participant,
he becomes a monitoring participant.

getParticipants(): IdList Obtain a list of all the participants in the session.

setPlan(name) Associate the named plan with the session. If there is already a
plan associated with the session, then it is forgotten in favor of the
new plan.

removePlan() No longer associate a plan with the session.

planUpdated() Informs the Session that its plan has been updated. The Session
should respond by retrieving the updated plan from the ODB.

getPlan(): name Determine which plan is associated with the session.

resourceRequest(name) The Sequence Executor uses this method to request a resource. If
the session does not already have access to the resource, the sys-
tem operator is notified.

addResource(resource) This method is invoked to notify the session that it has access to
the given resource.

removeResource(resource) Notify the session that it no longer has access to the given
resource.

getResourceList(): ResourceList Returns the list of resources available to the session.

startObs(observation) Starts executing an observation in the plan, subject to the approval
of the system operator. This method calls the startObs() method in
the SE for the observation.



The Access Subsystem, shown in Figure 22 below, is used to maintain associations between participants and
sessions. The Access Manager is the coordinating object of this subsystem. When a participant contacts the
SM application with his Observing Tool, a method in the Access Manager is called to notify the system
operator. Other methods are used to accept or reject the connection request. If the connection is accepted, a
Participant object is created (if one does not exist already) to represent the participant in the system. The Par-
ticipant object stores information about the observer such as his name and email address. The Session object
of the session that the observer is interested in is also informed of the new participant. Since a participant
may be interested in more than one session, and a session may have more than one participant, information
about particular session/participant associations is stored in the Connection link attribute.

stopObs(observation) Stops an executing observation associated with the session. This is
a “graceful” stop, resulting from invoking the SE’s stopObs()
method.

pauseObs(observation) Pauses an observation, resulting in pausing the subsystems that it
uses. This method invokes the SE’s pauseObs() method.

continueObs(observation) Continues a paused observation. This method invokes the SE’s
continueObs() method.

abortObs(observation) Halts an executing observation immediately. This method invokes
the SE’s abortObs() method.

Session Recipe Methods

Method Use

setSessionRecipe(name) This method is invoked to change the session recipe.

getSessionRecipe(): name Returns the current session recipe name.

startSession() Starts to execute the session recipe.

stopSession() Stops the session gracefully.

abortSession() Stops the session immediately.

pauseSession() Pause the session recipe execution.

continueSession() Continue a paused session.

Session Methods

Method Use



Access Subsystem Details

The methods that the Access Manager responds to are detailed in Table 8.

The Resource Subsystem is used to allocate resources to sessions (see Figure 23). The SM GUI provides a
means by which the system operator can indicate which resources should be granted to each session. The
Resource Manager object presents an interface to implement this functionality.

A Resource object exists for each system resource. It contains any necessary resource information along
with methods to permit the resource to be shared among sessions and staff.

Access Manager Methods

Method Use

connectionRequest(name) The Observing Tool contacts the Access Manager using this
method when an observer wishes to participate in a session. The
Session Manager operator is notified and responds, resulting in one
of the next two methods.

connectionAccept(session, participant) If the system operator at the Session Manager console accepts a
connection, this method is invoked. Session and Participant
objects are first created if necessary before this method is invoked,
and then the Access Manager creates the association between the
two.

connectionReject() When a connection request is rejected by the system operator, this
method is used to inform the observer.

getParticipantConnInfo(participant):
ConnectionInfo

This method returns all the connection information for the given
participant.

getParticipantByName(name): Partici-
pant

This method returns the participant identifier for the given
observer’s name.
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Resource Subsystem Details

The Observing Database is the persistent store for all the data the OCS uses during an observing session. At
the highest level it is modelled as a set of collections of document types. The documents managed by the col-
lections are themselves containers for more primitive data components. The documents share a common,
open construction that allows them to easily change their content. The data structure is discussed in the next
section.

Resource Manager Methods

Method Use

addResource(resource) Adds the given resource to the pool of resources being adminis-
tered by the Resource Manager.

shareResource(name, session) This method is invoked when the system operator wishes to grant a
resource to a particular session.

unshareResource(name) This method is invoked to remove access to the given resource.

Resource Methods

Method Use

shareWith(Id) Grants the given ID permission to use the resource.

unshareWith(Id) Removes permission to use the resource.

getAccessIDs(): IdList This method is invoked to determine who has access to the
resource.

-shareWith(id)
-unshareWith(id)
-getAccessIDs

-addResource(resource)
-shareResource(resName, session)
-unshareResource(resName)

#resourceInfo

Resource
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The ODB is modeled as an object-oriented database, not as a set of tables and keys as would be found in a
relational database. An object-oriented database provides the query capabilities of a relational database, but
also provides access methods that are familiar to programmers. The ODB appears as a persistent store for
objects. This means that the data in the ODB can be complex and flexible and when changes are made, they
are permanent. The relationships between the components and the contents of the components can change
and need not all be identical. This is required in order for the OCS to support the ability to add arbitrary com-
ponents to Science Programs and the ability to change the content of the data headers at run-time.

Figure 24 shows the Observing Database object model. There is a logical databases for each of the primary
persistent types: Plans, Science Programs, Observations, and Recipes. Each database is derived from a base
ODB Database type that provides basic database operations. Each database specialization adds convenience
methods that are built upon the base class methods and operate upon the correct data types.

Below the databases themselves are shown the associations between the documents and data.

• A Plan can reference many Science Programs and a Science Program can be referenced by many Plans.

• A Plan can also contain Observation objects. For instance, an on-site observer will include calibration
observations which don’t appear in any one user’s Science Program. The ability for an Observation to
appear in many Plans has been included event though that may be undesirable rather than enforcing a con-
straint at this time.

• Associated with each Observation object is a number of DataFile objects. These DataFiles contain the
OCS data to tie the observations in a Science Program to the actual data in the DHS. The actual data is
modelled as references to the external database.

• The Recipe Database is used by the POS applications. It contains the Session Recipes and the Sequence
Executor Recipes. These recipes are derived from the imported File type meaning that these files will be
text-based scripts that simply stored in the database.

The detailed model of the data in the databases was shown in Figure 4 of Section 9.0 and is not repeated
here. The basic structure of the documents in the databases is described in the next section.



Observing Database Object Model
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The Plans, Science Programs, Observations, Observation Groups, and Components are all made up of (are
derived from) a simple building block shown in Figure 25 called the SPItem (Science Program Item). Each
SP Item contains zero or more attribute/value pairs and zero or more SP Item children. The SP Item is a con-
tainer class with some data.

The Database Member Object Model

The SP Item Class is an abstract class that can be instantiated to any of the concrete program elements such
as observations and instrument configurations. An SP Items consists of the attributes and methods depicted
in Figure 26. The exact specification of methods is left to the detailed design, but a preliminary method set is
indicated Figure 26 and discussed in Table 14 to illustrate the ideas that make SP Item flexible and open.

The SP Item Abstract Class

Methods of Abstract Class SPItem

Method Use

getParent():SPItem Return the “parent” SP Item into which the item has been nested.
This is important for many operations, including moving an item
within the hierarchy.

getType():type Return the “type” of the SP Item.

getAllAV Return a list of all the attribute/value pairs associated with the
item. This is useful when the item is copied.
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The table shows that the basic SP Item interface supports most of the operations required to compose and
manipulate Science Programs and Plans as prototyped in the OT track Observing Tool (See also [7].) To get
to a component (a leaf in the structure), a program recursively examines an SP Item’s children until the com-
ponent is either found or has no children. Attributes and values can be present at any level. Each component
has a type (observation, plan, science program, etc.) to speed up frequent operations.

Table 2 of Section 9.2 showed the high-level POS view where the ODB appeared as a single OCSApp
instance with a set of public methods. Figure 24 shows a more detailed object model of the ODB where the
application is broken down into a number of individual database components. This section shows the public
methods of the ODB separated by document type.

Table 15 shows the methods for the abstract ODB base class. The methods of this table provide the basic
functionality of the database classes.

Methods for Abstract ODB Class

mergeAV(avList) Merge the given attributes and values with the existing attribute
set, replacing the values of existing attributes. Drag and drop oper-
ations will use this method.

getValue(attributeName) Return the value associated with a particular attribute. This method
is useful for initializing a form containing widgets that are used to
manipulate the attribute.

putValue(attributeName, newValue) Update a specific attribute with a given value. This is used when
editing a form for the SP Item.

getAllChildren():SPItemList Return all the children SP Items associated with item. The list of
children is needed for many operations, including expanding and
collapsing the hierarchy.

getChildren(type):SPItemList Return all the children SP Items associated with item of type type.

addChild(item, type, position) Add a child SP Item at the indicated position. This method is used
to establish the hierarchy of SP Items.

removeChild(item) Remove the given item from the set of children associations. Move
and delete operations will make use of this.

forEachChild(item, type, func f) Apply function f to all the children with correct type belonging to
item.

Method Use

get(name): ODBObject This private method returns a named object in an ODB database as
a ODBObject.

add(ODBObject) This private method adds an ODBObject to a database.

remove(name): ODBObject The named ODBObject is removed from the ODB database and
returned to the caller.

foreach(func f) This private method can is used to apply the function f to all the
items once in an ODB database.

query(“Query form”): ODBObject List This private method is used to make a query on objects in an ODB
database. The form of the query is probably some text string. The
result is a list of ODBObjects.

Method Use



Each of the individual databases extend the base class and personalize the methods for their own types to
provide convenience and the opportunity to hide class-specific implementation details.

Methods for Plan Database Class

Methods for ScienceProgram Database Class

Methods for Observation Database Class

Methods for Data Database Class

Method Use

getPlan(name): Plan A reference to a Plan object associated with name is returned.

addPlan(name) This method adds Plan name to the Plan Database.

removePlan(name):Plan This method removes the Plan name from the Plan Database and
returns a reference to it.

queryPlans(“Query form”):PlanList This method is used to select a subset of Plans from the Plan Data-
base. The query results in a list of Plans.

Method Use

getProg(name): ScienceProgram A reference to a ScienceProgram object associated with name is
returned.

addProg(name) This method adds ScienceProgram name to the Science Program
Database.

removeProg(name):ScienceProgram This method removes the ScienceProgram name from the Science
Program Database and returns a reference to it.

queryProgs(“Query form”):
ScienceProgramList

This method is used to select a subset of SciencePrograms from
the Science Program Database. The query results in a list of Scien-
cePrograms.

Method Use

getObs(name): Observation A reference to an Observation object associated with name is
returned.

addObs(name) This method adds Observation name to the Observation Database.

removeObs(name):Observation This method removes the Observation name from the Observation
Database and returns a reference to it.

queryObss(“Query form”):ObservationList This method is used to select a subset of Observations from the
Observation Database. The query results in a list of Observations.

Method Use

getDataFile(name): DataFile A reference to a DataFile object associated with name is returned.

addFile(name) This method adds DataFile name to the Data Database.

removeFile(name):DataFile This method removes the DataFile name from the Data Database
and returns a reference to it.

queryData(“Query form”):DataFileList This method is used to select a subset of DataFiles from the Data
Database. The query results in a list of DataFiles.



Methods for Recipe Database Class

Table 2 of Section 9.2 showed the high-level POS view where the Sequence Executor appeared as a single
Class derived from OCSApp with a set of public methods. Figure 27 shows a more detailed object model of
the Sequence Executor where the application is broken down into a number of cooperating classes. This sec-
tion describes the object model of the SE more fully. The public and private methods of the SE, shown here
as parts of other classes, are presented for each class.

The SE is an engine for executing a single observation, which can produce zero or more science data files.
The object model of the SE is very similar to what was functionally described in the SDD. In Figure 27 the
Sequence Executor composite object is shown as an association of four object classes: the Sequence Execu-
tor, the Executor Recipe, the Executor Controller, and the Observation. The Observation is not a part of the
SE; it is the instance of class Observation that is being executed by the SE. It is included here with its meth-
ods for clarity.

Sequence Executor. The job of the Sequence Executor object is to coordinate the efforts of the other
objects. This object supports methods that allow the caller to identify which Recipe to use and which Obser-
vation is to be executed. Setting the Recipe associates a particular Recipe with the Executor Recipe. Setting
the observation associates an Observation in the ODB with the Sequence Executor.

Executor Recipe. The Recipe is a text file that describes the consistent operations that take place every time
an observation is made. Recipes are created by the operations staff, not observers. The recipes are to be
scripts (derived from File) editable with any text editor. The Recipe class supports a few methods that are
used by a Sequence Executor object to control the gross operation of the observation.

Executor Controller. The Executor Controller is the code-level support for the recipe (the Recipe Library in
the SDD). An Executor Recipe uses the calls in the pubic interface of the Executor Controller to execute the
Observation pattern and to control the principal systems. The Executor Controller sends Sequence Com-
mands (see [10] for definitions) to the principal systems as has been discussed too much elsewhere.

Observation. The Observation object is accessed in the ODB by the Sequence Executor and used by the
Executor Controller to provide information it needs to successfully execute the observation. The Executor
Controller can modify an observation when it saves header information or updates component configurations
at the conclusion of a Verify. It relies upon the Observation to tell it what it needs to execute (what resources
it needs.)

The Sequence Executor is a cooperative effort of all four object classes and an instance of the Sequence
Executor will have one instance of each class. Dynamic modeling of the SE is reserved for the DD phase.

Method Use

getRecipe(name): Recipe A reference to a Recipe object associated with name is returned.

addRecipe(name) This method adds Recipe name to the Recipe Database.

removeRecipe(name):Recipe This method removes the Recipe name from the Recipe Database
and returns a reference to it.

queryRecipes(“Query form”):RecipeList This method is used to select a subset of Recipes from the Recipe
Database. The query results in a list of Recipes.



Sequence Executor Object Model

The following tables describe the methods each SE class exports. Note that all but one of the Executor Con-
troller methods are private meaning they are only available for use by other objects in the Sequence Execu-
tor.

+getName()
+start()
+stop()
+pause()

Executor
Recipe

#RecipeName

+continue()

-initController()

Executor
Controller

-obsInit()
-obsEnd()

-test()
-init()
-reset()
-park()
-verify()

-apply()
-observe()

-snapshot()
-checkConfig()

-pause()
-continue()
-stop()
-abort()

-postObsStatus()

+updateStatus(var list)

+setObs(ObsName)

+getObs()
+setRecipe(RecipeName)
+getRecipe()

Sequence
Executor

#SessionOwner

File:Imported

Principal
System

+getName()

+abort()

OperatesUses

Uses

Upon

Observation

+getResourceList()
+getComponentList()
+addComp(Comp)
+removeComp(Comp)

+pauseObs()
+continueObs()
+abortObs()
+stopObs()



Sequence Executor Class Methods

The methods in Table 22 are used by the Sequence Executor object to control the high-level operation the
observation.

Executor Recipe Methods

The methods of Table 23 are the primitives that can be used to build the observing pattern in a recipe. There
are several methods that do not map to Sequence Commands, but are used to allow the controller to manage
the operation of the controller. Most Sequence Commands are present in the controller interface. Some like
ObsEnd are not present in the Executor Controller interface because the controller’s observe() only returns
once the complete OBSERVE sequence is completed.

Executor Controller (all methods are private unless otherwise noted)

Method Use

setObs(obsName) This method allows the caller to set the Observation that will be
executed by the SE. The name of the observation is a character
string.

getName(): Name This method returns the name of the observation associated with
the SE.

getObs(): Observation This method returns the Observation object associated with the
Sequence Executor instance.

setRecipe(recipeName): This method allows the caller to set the Recipe that will be used to
execute the observation. The name of the Recipe is a character
string. Calling this method causes the SE object to search for the
recipe in the ODB.

getRecipe():recipeName This method returns the name of the recipe associated with the SE.

Method Use

getName(): Name This public method returns the name of the recipe.

start() This public method starts the execution of the observation.

stop() This public method stops the execution of the observation at the
next appropriate time.

pause() This public method pauses the execution of the observation if it is
executing.

continue() This public method continues the execution of the observation if it
is paused.

abort() This public method causes an observation to terminate immedi-
ately.

Method Use

initController() This method is provided to allow the Executor Controller (EC)
object to perform any self initialization required at the beginning
of observation execution.

obsInit() This method is called to have the EC to perform operations related
to the observation (such as resource allocation) that are required
before actual execution begins.



As an alternative, it has been stated that instrument consoles should be able to acquire data on their own,
without the support or assistance of the POS track. This section presents the issue and discusses how it is
supported in the OCS. This feature of OCS instrument consoles should not be confused with the functional-
ity provided by the instruments themselves through their engineering consoles, which must also have the
ability to acquire data.

obsEnd() This method is called to have the EC do final clean up operations
once the observation execution is completed (such as freeing
resources).

postObsStatus() This method is used to cause the EC to post status information
related to the execution of the observation.

snapshot() This method.causes the EC to sample the values of status values
for headers. It then stores the data set with the observation in the
ODB.

checkConfig() This method is used to force the EC to immediately check to see if
any important status values have changed during observation exe-
cution. Important status values are associated with the observation
components.

test() This method causes the EC to perform the TEST sequence com-
mand.

init() This method causes the EC to perform the INIT sequence com-
mand.

reset() This method causes the EC to perform the RESET sequence com-
mand.

park() This method causes the EC to perform the PARK sequence com-
mand.

verify() This method causes the EC to perform the VERIFY sequence
command. The EC will return when the VERIFY is complete with
a list of changed variable names.

updateStatus(var name list) This public method is used to cause the EC to update variable
names in the Observation.

apply() This method causes the EC to perform the APPLY sequence com-
mand.

observe() This method causes the EC to perform the OBSERVE sequence
command. The method completes when the observation is com-
pleted. This may involve execution of a complex observe script
depending on the Observation.

pause() This method causes the EC to perform the PAUSE sequence com-
mand.

continue() This method causes the EC to perform the CONTINUE sequence
command.

stop() This method causes the EC to perform the STOP sequence com-
mand.

abort() This method causes the EC to perform the ABORT sequence com-
mand.

Method Use



The features and advantages of the POS are not available when using an instrument console to acquire data.
When observers are acquiring data with an instrument’s console they are doing interactive classical observ-
ing.

• Observer’s can configure the instrument and obtain data with their console.

• Configuration and verification of the configuration of the telescope and any other subsystems is done by
the observers and operators.

• Any sequencing of the principal systems is done by the operator and observer.

• The data acquired with a console is not associated with any Science Program so the OT can not be used.
There is no record of the data or observations in the ODB. The data record will be in the DHS and the data
headers.

Our solution is to use the products of the POS track, namely the Sequence Executor, to acquire data from
consoles. The SE design has been done to support this feature. Figure 28 shows the Object Model.

Stand-alone console Object Model

The instrument console and Sequence Executor are both instances of OCSApp so they have the capability of
communicating with principal systems. A single SE is associated with an instrument console used in this
mode. The SE runs a very simple static recipe that takes the instrument configuration from the console and
applies it to the instrument. The recipe is a script that is used over and over each time a new data is acquired

Sequence Executor

Instrument Console

Uses

1

1

Instrument PSDHS



with the console. The data flows to the DHS from the instrument as it always does. The following steps are
taken when the observe button is pushed.

• The console builds a configuration and makes it available to the SE.

• The SE takes the configuration and applies it to the instrument (instrument consoles don’t configure other
principal systems).

• The SE sends OBSERVE and ENDOBSERVE at appropriate times.

• The SE can send values from its console to the DHS with ENDOBSERVE. Other header data should be
sampled by the instrument itself in this mode.

• During OBSERVE, the console can be used to pause or continue the data acquisition process.

Since the OCS provides the ability to write scripts that can control the principal systems and access data in
the status/alarm database, there are many approaches to console-based interactive observing. We have cho-
sen the approach presented here because it allows us to reuse code from the POS.



The Observing Tool Track is one of the development tracks in the development plan for the Observatory
Control System (OCS) of the Gemini Telescopes. The following statements are from the Software Design
Review OCS Development Plan [6].

This track is dedicated to developing the Observing Tool and its associated functionality including run-
time monitoring of observations. (page 3)

[This track, along with the Planned Observing Support Track] must be completed before automatic
control of the telescope configuration is possible. This functionality is required for the operational
phase planned observing capabilities. (page 7)

The product of the Observing Tool track is the Observing Tool (OT) application, the primary astronomer
interface of the Gemini control system. A prototype has been created that simulates the planning and remote
data collection functions of the OT. This prototype, along with the discussion of the OT in the SDD, repre-
sent baseline functionality of the OT interface [1]. The purpose of this document is to describe how the OT
fits in with the remainder of the GCS software.

This report presents the preliminary design of the OT track to a depth such that the track can continue on in
its development independently of the other OCS tracks. The following information is contained in this
report:

• Summary view of the OT prototype.

• Remaining decisions for the detailed design of the track.

• High-level preliminary design for the track.

• Dataflow between applications in the OT track and the other OCS tracks.

• Usability testing plans.

• List of required documentation.



• OMT Modelling information including a description of the Subject, View, and Controller of the OT OCS-
App.

API Application Programmer Interface

CLL Command Layer Library

CTT Control Track Library

GUI Graphical User Interface

GCS Gemini Control System

IOC Input/Output Controller

IOI Interactive Observing Infrastructure

OCS Observatory Control System

ODB Observing Database

OT Observing Tool

PD Preliminary Design

POS Planned Observing Support

PS Principal System

PSA Principal System Agent

SAD Status Alarm Database

SDD Software Design Description

SIR Status Information Record

SM Session Manager
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Observing Tool Prototype Screen



The OT prototype was created to try new ideas and identify problems. It provides a working description of
OT concepts that can be used to point out problems and make suggestions. A picture of the main screen of
the prototype is shown in Figure 1 on page 3 for reference.

This screen is used for editing the structure of a science program document. The program is represented by
various icons in an expandable, hierarchical outline format. For instance, observations are represented by
“eyeball” icons. The NGC40 observation has been expanded to show its contents while M76 and the Saturn
Nebula are both collapsed. Components can be cut/copied/pasted and dragged/dropped in familiar ways.

The contents of a component are edited by double clicking the appropriate icon in the outline. For instance,
the form used to edit a telescope target list is shown in Figure 2.

A Prototype Form for Editing a Science Program Component



One of the goals of the prototype is to demonstrate how an observation, or groups of observations, can be
specified in sufficient detail to permit service observing and (semi) automated scheduling. Another impor-
tant goal is to show that, with the proper interface, this process can be relatively painless. However, it is not
the purpose of this paper to review the details of the OT prototype or to discuss how it will be improved dur-
ing the detailed design. Rather, the focus should be on identifying inter-track dependencies and discussing
how the OT fits in with the remainder of the control system.

The reviewed, OCS Software Design Review states that the following study will be done as part of the OT
detailed design step.

Evaluation of the Observing Tool Prototype. A prototype of the Observing Tool and its concepts has been
developed ... The lessons learned from the development of this prototype and the comments of the astrono-
mers who came in contact with this prototype must be evaluated.

This prototype has been reviewed at various meetings and conferences, including the Gemini Science Com-
mittee in Tucson on 4/29/95, and the New Modes of Observing conference in Hilo on 7/8/95. It has been
generally well received, with suggestions for improvement here and there. These suggestions will be taken
into account during the detailed design.

The Observing Tool application is built upon the functionality of the Console Track Library [4], and the
Planned Observing Support (POS) track [3]. The Console Track Library provides an interface that allows the
OT to configure a console from a science program component, and to place a console configuration into a
science program. The POS track provides the OT with the following:

• A Session Manager (SM) application that handles run-time interactions with the Observing Tool.

• An interface to the Observing Database for Science Program and Science Plan storage.

The SM is used by on-site operators to allocate system resources and execute observations. Except for inter-
active observing via consoles, all observing sessions will go through the SM. An OT, whether used by on-
site or remote observers, will contact the SM to submit observations and/or monitor their progress. Observ-
ing information passes up from executors to the SM and then to the appropriate OT(s).

The OT will also retrieve observing data from the DHS data store. If requested fairly soon after the data is
collected, it will be retrieved directly from the telescope site. Otherwise, the Data Archive may have to be
contacted. In any case,

• the DHS must provide a public interface that will permit an OCS process to access the data collected dur-
ing an observing run.

An agent process will be constructed by the OCS to communicate with the DHS, using the API that they
decide upon. The OT will contact the agent process to collect the data.

A diagram showing the relationship between an OT, the remainder of the OCS, and the DHS is shown in
Figure 3. The OT is built upon the functionality of the toolkit for the chosen graphical user interface (cur-
rently Tk), using agreed upon conventions. The SM will require information in the ODB (e.g., the Observing
Pool) so a connection is shown in the diagram, but is not discussed in depth. A more detailed discussion of
the SM is left to [3].



The Software Environment of the OT Track

The OT design is driven by the Software Requirements document [5]. The points relevant to the high-level,
inter-track design are discussed below.

A formal document, the Science Program, is required to specify observations in enough detail that they can
be carried out by staff observers (SR5, SR25, SR26). The OT is designed to produce and modify science pro-
grams, and to submit/retrieve (parts of) them from the telescope sites (SR27). To support these requirements,
the ODB interface must provide at least

• A means to browse all the programs for given users,

• Support for accepting and storing science programs, and

• Support retrieving/accepting observations and parts of observations for modification.

In addition to listing available programs, there may be other database information that the observer needs for
the planning process. The ODB will provide access to this information.

To provide an integrated operating environment (SR2), consoles and the OT should work together in a natu-
ral way. A console allows an operator to set up a future configuration for a system in much the same way as



an OT form. Using a console, an “Accept” button is pressed after the setup is entered and the system is com-
manded to match the configuration immediately. Using the OT, the setup information becomes part of a sci-
ence program to be applied at an indeterminate time in the future. However, we can use the common features
of both environments to simplify the observing and planning processes. The method of communication
between an OT and a console is the familiar drag and drop protocol used in other portions of the OT.
Namely, it will be possible to both

• Drag a configuration from an OT form and drop it onto a console, causing the console to match the config-
uration, and

• Drag a console configuration into the OT, either onto a form or as a separate unit in the science program.

This feature is intended to be used exclusively on-site. For safety reasons, consoles that directly control
hardware systems should not be available away from the telescope (SR41, SR42).

The OCS user interface must support interactive observing, remote observing, queue observing, and service
observing (SR22, SR30, SR25, SR26). Furthermore, it must integrate the various observing modes to present
one common observing environment (SR2). The Observing Tool is the application that fulfills these require-
ments.

Whether away from the telescope “eavesdropping” on a service observation, remotely executing observa-
tions, or on-site running a queue, the Observing Tool should present the same information to the user (lim-
ited by network bandwidth of course) (SR40). The types of information required should be worked out in the
detailed design phase, but the requirement must be supported regardless.

From the OT’s perspective, the source of run-time observing information is the Session Manager (SM)
application. Whether remote or on-site, the OT will have to establish a connection with the SM to monitor
observations. Since the SM is used to allocate resources and execute observations, it is in the domain of the
on-site system operator, and connections must be approved by him/her. For remote users, one can envision
contacting the PI before his service observations are executed or before his remote observing session begins.
The remote user could then start up his OT, submit a connection request and wait for it to be granted.

After establishing a connection, the OT will receive updates from the SM as an observation progress. If the
connection is remote, then the information received may be a subset of that available to the on-site observer
depending upon available bandwidth. However, the design does not make arbitrary distinctions between
observing modes.

The OCS user interface must provide support for creating and executing a science plan constructed from the
observations of one or more science programs (SR32, SR33). The OT will be used to fulfill this requirement.

A science plan is a queue of observations that should be carried out during an observing session. As dis-
cussed in the previous section, a connection with the Session Manager is required to interact with executing
observations. To actually control which observation is executed next, the required system resources must be
granted by the operator using the SM. It is ultimately the responsibility of the on-site operator to approve the
execution of observations in the GCS, but the observer can control their ordering using the OT.

Executing and ordering observations involves sending information to the SM application. The SM will need
access to information in the Observing Database to actually start an executor and run the observation.
Regardless of the details of how the observation is carried out in the underlying system though, the SM and
OT must have an interface that permits the OT to:

• Specify which observation(s) should be executed next, and



• Start, stop, or pause the ongoing observation.

Obviously, the monitoring information discussed in the previous section is used for executing a science plan
as well.

The OT application communicates with other OCS processes (Consoles, the Session Manager, the Observ-
ing Database Agent, and the Data Agent). The communication between the OT and OCS applications will
utilize the internal OCS Message System, which is TBD. The information that must be passed between the
OT and other OCS applications has been detailed above.

The Observing Tool is among the highest level software products in the OCS. Accordingly, it relies upon the
other tracks, particularly the Planned Observing Support Track, to be fully functional. However, the OT
design should be able to proceed fairly independently of the other tracks since the types of communications
required are known. The OCS development plan is discussed elsewhere [6].

To insure that the OT application is of the highest quality, input from observers will be solicited whenever
possible. An experienced, volunteer “OT testing team” should be assembled when the detailed design phase
begins. This team will be called upon to evaluate the OT at various points as it is developed. Their input will
then be folded back into the design for future evaluations. A critical consideration here is the size and
makeup of the testing team. If the team is too small then we risk producing a tool that has been too finely
customized for a small subset of users. However, if we make the tool available to the world then we risk
being inundated with conflicting and often irrelevant viewpoints.

The following approaches, modified from the TCC Track design, also apply to the OT Track:

• The design of the OT will be solely in the hands of the OCS programming team. Their experiences with
similar systems will guide the screen layout and design. The OCS programmers will be responsible for
producing a usable system.

• The design of the OT will fold in the useful innovations of the operator interfaces of telescope control sys-
tems the OCS programmers visit.

• Any suggestions from the project scientists and the results of any discussions on operations will be folded
into the design.

• All work will adhere to Gemini GUI style standards.

To ensure that operations staff programmers can make changes that will inevitably be required to the OT
once the telescopes go on-line, the following is an OT track implementation goal.

• The implementation of the OT will be done to make layout and cosmetic changes to the consoles as simple
as the chosen GUI toolkit allows.



The documentation for the OT track will follow the documentation requirements in the OCS SDR docu-
ments (SR66, SR67, SR68). The OT track must provide both user applications and testing software.

The Observing Tool Manual. The Observing Tool is a large application with many features. It is intended
to be the primary observer interface to the Gemini Telescopes. Therefore it must be accompanied by appro-
priately detailed documentation.

At this time there is no Gemini software requirement to provide automated testing of GUI programs. How-
ever, the OT must communicate with many other processes to fulfill its functionality. Some of these commu-
nications can be tested and documented without the graphical portion of the OT.

The primary deliverable of the OT Track is the Observing Tool application. Extensive documentation must
accompany the OT as well since it represents the primary observer interface to the Gemini Telescopes.



The OCS has been modelled using the Rumbaugh (OMT) object-oriented design methodology. The overall
design is present in [7], using concepts and notation from [8] and [9]. An understanding of this material is
essential for this section.

The Observing Tool is just another instance of an OCSApp that interacts with other OCSApps. An initial
decomposition of the OT into its Subject and Views is attempted below. The Controller interface is not
stressed since a prototype exists that serves to get the idea across.

The ApplicationSubject of the OT consists of three main entities:

• Science Programs,

• Science Plans, and

• Run-Time Information

Each is discussed in the following sections along with the views presented to the user. Other information,
such as available resources and programs may be found in the subject as well, but these are not covered in
detail.

The Science Program (SP) is the focus of the Observing Tool. Programs are created, edited, and stored with
the OT, and SP components make up Science Plans as well. Science programs are composed of a number of
distinct objects including Observations, Observation Groups, Iterators, and links to other objects. However,
each type of object (each class) has a great deal in common with the other classes. Each has data consisting
of a set of attribute/value pairs and is related to zero or more “children” objects. The children are used to
express the SP hierarchy discussed in [1]. The object model for science programs is presented in Figure 4
below.

The Science Program Object Model

The SP Item (Science Program Item) Class is an abstract class that can be instantiated to any of the concrete
program elements such as observations and instrument configurations. At a minimum, SP Items will contain
the attributes and methods depicted in Figure 5. The exact specification of methods should be left to the
detailed design, but this set is indicated here (and discussed in Table 1) to illustrate these ideas.

SP Item AV Pair

ObservationScience
Program

Observation
Group

IR Imager . . .

Has data

Has children



The SP Item Abstract Class

The Observing Tool will present at least two views of the program (see Figure 1 on page 3 and Figure 2 on
page 4 for prototypes). The first view is a hierarchical outline that may be expanded and collapsed to obtain
the desired level of detail. The controller uses this view to permit editing the program’s structure. The con-
tents of individual items are edited through another view, a form that presents the item’s attribute/value data
in a meaningful way. The methods of SP Items support these views as discussed below.

The “type” attribute in an SP Item is set to the concrete class name that is instantiated from SP Item. It is
needed so that restrictions on certain operations may be enforced, for instance “Science Program” items can-
not be children of “Observation” items. Other attributes will no doubt be needed as well.

The Science Plan is really just a Science Program that is interpreted as an ordered list of observations.
Accordingly, it is viewed as an extension of the Science Program class that adds a few new methods. At a
minimum, a method is required to get the “next” observation after a given observation.

SP Item Methods

Method Use

addChild(item, position) Add a child SP Item at the indicated position. This method is used
to establish the hierarchy of SP Items.

getAllAV Return a list of all the attribute/value pairs associated with the
item. This is useful when the item is copied.

getChildren Return all the children SP Items associated with item. The list of
children is needed for many operations, including expanding and
collapsing the hierarchy.

getParent Return the “parent” SP Item into which the item has been nested.
This is important for many operations, including moving an item
within the hierarchy.

getValue(attributeName) Return the value associated with a particular attribute. This method
is useful for initializing a form containing widgets that are used to
manipulate the attribute.

mergeAV(avList) Merge the given attributes and values with the existing attribute
set, replacing the values of existing attributes. Drag and drop oper-
ations will use this method.

putValue(attributeName, newValue) Update a specific attribute with a given value. This is used when
editing a form for the SP Item.

removeChild(item) Remove the given item from the set of children associations. Move
and delete operations will make use of this.

SP Item

type

addChild(item, position)
getAllAV
getChildren
getParent
getValue(attributeName)
mergeAV(avList)
putValue(attributeName, newValue)
removeChild(item)



The Science Plan Class

Science Plans are constructed by adding observations from one or more programs. The observations should
not be copied into the plan, but rather should be referenced from the plan. Programs will contain references
to plans as well, for instance for shared calibrations that are specified once in a science plan for many obser-
vations. The “reference” objects are just another subclass of SP Item.

Both views of science programs should be available for plans as well. In addition, a special Plan Progress
view is required (see the prototype in chapter 5 of [1]). This view shows the plan as a queue of observations,
where the size of an observation’s icon is relative to its duration. This view is just a projection of the Science
Plan which has been flattened to show only a single stream of observations. When actually running a plan
with the OT, the current time can be indicated on the view and completed observations can be shown in a dif-
ferent color.

The Session Manager develops the Science Program and Plan objects in its section on the Observing Data-
base [3]. This document should be consulted for a more complete picture of how the Planned Observing
Support track will make use of programs and plans.

Since the OT can be used both to monitor and to execute observations, a certain amount of run-time informa-
tion should be part of the Application Subject. Examples of this information include the telescope and instru-
ment statuses, the current observation being executed, the acquisition camera view, and a quick look image.
Since the source of run-time information is another OCSApp (the Session Manager), it is acquired from the
SystemSubject. The view on this subject should be familiar to the observer from his experience with other
observatories.

The Observing Tool is used by observers; whether or not they are staff astronomers, no distinction is made in
the interface presented to the user or in the types of interactions that may occur. The staff has access to all
programs from any observer, whereas non-staff observers only have access to their own programs. However
this does not affect the way that the OT is used by either group. From the point of view of the OT Track,
there is a single “Observer” actor that initiates events in the system.

The OT also interacts with the observation data store, with the Observing Database, with consoles via drag
and drop, and with the Session Manager application. To show interactions among the various objects, a set of
“use cases” has been developed. Since there are too many types of interactions to detail each one individu-
ally, a set of some of the fundamentally different ways that the observer interacts with the system is listed.
Representative instances of each are indicated below and then explored in the following sections.

Science Plan

SP Item

Science Program

getNextObs(afterObs)



Editing a Science Program or Plan

Using the OT with consoles

Drag a program item onto a console

Place a console configuration in a program

Monitoring an executing observation’s progress in the system

Executing an Observation in a Plan

This case begins with the assumption that the observer has established a connection to the Observing Data-
base (ODB). He now wishes to edit a program that was previously stored in the ODB. An object interaction
diagram corresponding to this case is presented in Figure 7.

Use Case 1, Opening a Science Program at the Site

For the purpose of modelling the flow of information between objects in the OCS, the Observer’s interaction
with the Controller is not important. Hence, the source of all events in these diagrams is taken to be the Con-
troller itself; it is the surrogate for the user. Of course, an Observer would have to be physically present
clicking on buttons to cause the Controller to generate events.

The interaction begins when the Controller requests an “open science program” operation. The ODB is then
queried in step 2 to obtain a listing of the available programs for the given user. The programs returned as a
result of this operation are listed in a file selection box (in SVC terminology, a view on the available pro-
grams is presented). One is eventually selected causing the Controller to generate event 3. After a reference
to the program has been retrieved in the final step, the Science Program view is updated to show the new
information.

Since a link to the information is returned in step 4, when a change to the program is applied by the Control-
ler, the updated information is stored in the ODB.

In this use case, the observer drags an item (such as a Target List) from the science program, and drops it on
a console. This interaction is illustrated in Figure 8.

Controller

Subject

ODB

1: open

3: selectProgram(programName)

2: programs := queryProgs(“username = myUsername”)

4: scienceProgram := getProg(programName)

OT



Case 2.a, Dragging a Science Program Item onto a Console

The interaction begins when the observer presses the appropriate mouse button on the program item. This
causes the Controller to command the Subject to create a “drag object”. This is essentially a copy of the
item’s attribute/value set. The view on this object is the icon that is moved around the screen with the mouse.
When the observer drops the object on a telescope console, the console is commanded to match the configu-
ration specified by the attribute/value set.

As discussed above, an implementation that closely matches BLT’s drag&drop utility is envisioned. Whether
BLT is ultimately used, the attribute/value list corresponding to an item must be saved when the drag and
drop session begins, and this information must be transferred to the destination console when the session
ends. The exact sequence of operations in the implementation may differ however.

This case is similar to the previous case, except that the flow of information is reversed. Also, the console
configuration can be dropped on one of two views in the science program, and the resulting actions vary
accordingly. In one case, the configuration is dropped onto the outline view, causing a new SP Item to be cre-
ated and added to the program. In the other case, the configuration is dropped onto the editing form for a par-
ticular item, causing the form’s widgets to match the configuration.

To monitor an observation, a connection with the Session Manager application must first be established.
From the point of view of the Observing Tool, the Session Manager is the source of run-time observing
information as illustrated in Figure 9.
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Subject

Console

1: avList := createDragObject(item)

2: dropObject(avList)

3: matchConfiguration(avList)

OT



Case 3, Monitoring an Executing Observation’s Progress

To initiate a session, the OT must provide access permission information, initially specified as a userName.
The system operator at the site must create the session (if it does not already exist) to establish the connec-
tion. He will know which session the user is interested in monitoring and can decide whether to permit the
connection. More than one OT can monitor a given session, though only one can control the execution of
observations (see [3]).

Once the session is established, any run-time information generated as a result of executing the observations
in the session is passed to the OT. The view on the run-time subject would then be updated accordingly. The
asterisk on step 3 indicates that this event can occur repeatedly.

When the OT is being used to execute observations from a plan, it is sharing the information in the plan with
the Session Manager application of the Planned Observing Support Track. In other words, the same plan is
part of the OT’s Subject and the Session Manager’s Subject. Changes made to the Plan from either applica-
tion must be reflected in the other.

There are many ways that the high-level interface to the plan execution facility can be organized. The details
must be left to the detailed design phase, but a likely scenario is presented here. The information that must
flow between the various applications is known however so the scenario is useful for modeling object inter-
actions.

When executing a plan with the OT, the user is given control over ordering the observations in the plan and
marking which observations are ready to be considered for execution. When an observation has been
marked, it shows up in the session granted to the observer in the Session Manager (SM). Before a “ready”
observation begins execution, it may still be rearranged using the OT, and these changes should be reflected
in the SM. The object interaction diagram in Figure 10 shows what happens when an observation is inserted
into the plan and then is marked for execution.

The observer first inserts an observation into the plan using the controller. The observation and location argu-
ment types are unspecified here because we want to focus on which events are sent and what information has
to be imparted, not the implementation details. The change to the Science Plan Subject causes the plan in the
Observing Database to be updated since the OT plan is a link to a plan in the ODB. Since the OT is con-
nected to a session in the SM, a planUpdated() message is sent in step 2. The SM then consults the ODB to
get an updated list of observations. Note that the ODB may support an event notification capability. In this
case, the ODB would notify clients whenever the data they are monitoring is updated, and the planUpdated()
method would not be needed.
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Subject

Session Manager

1: initiateSession

2: connectionRequest(userName)

OT

3*: update (runTimeInfo)



The observation is marked ready triggering an update in the Session Manager as well (steps 4,5). As before,
an updated list of observations is then fetched from the ODB and displayed on the SM GUI.

Case 4, Inserting an Observation into a Science Plan

The observer also controls when he wants to stop/pause/continue an observation. The system operator sitting
at the SM has the ultimate control over observations, but it is expected that in most cases he will simply place
the session in “auto” mode, immediately accepting the observer’s input. For instance, if the observer decides
to stop an executing observation, the SM stopObs(obs) method will be invoked by the OT.

This section has presented additional design information for the Observing Tool track. A simple model of
Science Program/Plan data was given followed by a discussion of the SVC decomposition of the OT. A few
object interaction diagrams then provided an indication of how the OT interacts with the products of the
Planned Observing Support track. For more detailed information on these interactions, see [3].

2: planUpdated ()

5: planUpdated ()
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Session Manager

1: insertObs(observation, location)

OT

ODB

4: markObsForExecution(observation)

3: obsList := getNextObs(afterCurrentObs)
6: obsList := getNextObs(afterCurrentObs)



The Telescope Control Console Track (the Console Track in the Work Breakdown Schedule) is one of the
development tracks in the development plan for the Observatory Control System (OCS) of the Gemini Tele-
scope. The following statements are from the Software Design Review OCS Development Plan [4].

Building upon the Interactive Observing Support Track, this track is focused on the development of the
consoles that will be used at the site by operators/staff to control the telescope and its related subsys-
tems. (page 3)

This track provides the telescope consoles and is built directly upon the previous phase. Once com-
pleted, interactive control of the telescope is possible for hardware and software system testing. Inter-
active observing is possible using the engineering interfaces provided by instrument builders. (page 7)

The job of the Telescope Control Console (TCC) track is to produce the console applications that will be
used by the operators to control the telescope and its subsystems interactively during the commissioning and
operational operations phases. This track also includes any consoles the OCS must produce to make the job
of the operator simpler that may not be directly related to the telescope and its hardware (an example might
be a star catalog access application).

This report presents the preliminary design of the TCC track to a depth such that the track can continue on in
its development independently of the other OCS tracks. The following information is contained in this
report.

• A high-level preliminary design for the track.

• The dataflow between applications in the TCC track and the other OCS tracks.

• The dataflow between applications in the TCC track and the other principal systems.

• A preliminary list of the known TCS consoles.

• The status of the information from other principal systems and the timetable for its arrival.



This paper often focuses on EPICS-related issues and problems since the consoles of this track are tied to the
TCS, which is a CAD-based EPICS system.

API Application Programmer Interface

CLL Command Layer Library

CTL Control Track Library

GUI Graphical User Interface

IOC Input/Output Controller

IOI Interactive Observing Infrastructure

OCS Observatory Control System

ODB Observing Database

PD Preliminary Design

PS Principal System

PSA Principal System Agent

SIR Status Information Record

SAD Status Alarm Database

TCC Telescope Control Console
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The reviewed, OCS Software Design Review states that the following decisions will be made as part of the
TCC detailed design step.

Graphical User Interface Standards. The requirements for the graphical user interface look and feel and
GUI toolkit that will be used for all OCS observer and staff tools will be reviewed in order to take account of
any changes to project requirements. One or more toolkit implementations will be selected. The ESO/VLT
GUI Common Conventions [5] style guide, a Gemini Standard, will be reviewed and any changes or addi-
tions will be proposed to ESO and the project for consideration.

The baseline decision to use Tk has been made by the project in this area, but it is important to re-visit this
decision one more time in light of the fast-paced industry development in this area.

Associated with this trade study will be analysis and choice of GUI development-related software tools, if
needed.

The physical model of the OCS [6] describes the layering present in the OCS software system. For the TCC
track, the OCS consists of a set of cooperating applications. Each application is an instance of OCSApp and
it inherits all the functionality provided by the SystemSubject subystem. The physical model of the OCS as a
set of OCSApps is shown in Figure 1.

The consoles are an important part of the TCC track. Designing and implementing a console consists of
designing the AppSubject, Views, and Controller that are unique to the console application and implement-
ing them in the chosen language.

So the model for an OCSApp is the basis for the models for the specific console applications that will be
done during the TCC track. An example of modeling a console was discussed in [6] and will not be repeated
here.

The functionality of the SystemSubject (the Command Layer Library) provides the AppSubject objects with
command and status communications capabilities. This allows the console designers to focus on the design
of their application-specific code.

At this time, it is impossible to model the individual console instances in any further detail. Each console
detailed design will be accompanied by a physical model.

A software library is also produced as a product of this track. The physical model of this library will be dis-
cussed later in the paper.



OCSApp Subsystems and Classes

The applications in the TCC track are built directly upon the functionality of the Interactive Observing Infra-
structure (IOI) track [2]. The IOI track provides TCC applications with the following capabilities:

• Applications can send commands and acquire the status of the other principal systems.

• Applications can send commands and acquire the status of other OCS applications.

• Applications can wait for the completion of sequence commands executing in the other principal systems
or other OCSApp instances.

• Applications can subscribe to the status information of the other principal systems and other OCSApps
including alarms and health.

• Applications acquire access to the functions of other systems through the IOI track functionality.

• Applications can log messages to a file and to the DHS logging system.

The Command Layer Library of the IOI is dynamically linked with every application in the TCC track. The
CLL API provides a programmer interface to the above functionality. A scripting interface (probably written
in Tool Command Language) will also be available as a product of the IOI track.

A block diagram showing the relationship between console applications in the TCC and the IOI track is
shown in Figure 2. The consoles are instances of OCSApp.

Applications are built upon the functionality of the IOI track CLL and the toolkit for the chosen graphical
user interface (currently Tk). Also shown is a Console Track Library (CTL) that will be produced as part of

User

OCSApp
Controller

AppSubject System Subject

OCS

Subject View

1

Principal
System

Uses

External
Database

1+

Interacts with

1+

Uses



the TCC track to provide common console functionality at a level higher than the CLL. Some functionality
of the CTL is known now and is discussed later in this report. Other functionality will be determined by the
TCC track developers later in the design/implementation process.

The dataflow to and from the other principal systems through the CLL is also shown for completeness but is
not discussed here. (See [2].)

The Software Environment of the TCC Track



The TCC track applications communicate with other OCS processes including:

• Observing Tool - to save and restore their configuration.

• Observing Database - to obtain shared system data. This communication uses the OCS Message System or
a ODB specific Service in the CLL. The implementation of the ODB is not known at this time.

• Any other OCS CLL-based application.

The TCC track applications must also communicate with the other principal systems.

• To send commands and receive synchronous and asynchronous responses.

• To receive status.

Inter-OCS communication uses the OCS Message System, and the software interface for these communica-
tions is provided by the Command Layer Library OCS Service product. Both are part of the Interactive
Observing Infrastructure track. The requirements for this CLL interface are in the IOI track document [2].

The Telescope Control Console track relies completely upon the functionality of the Interactive Observing
Infrastructure track and must follow that track in the development process. The OCS development plan is
discussed elsewhere [3].

The TCC track development plan will be phased to allow maximum track parallelism. The CTL will be
released in alpha and beta form before the entire TCC track is completed so that work on the User/Observer
Track consoles can begin if needed. After Alph2 of the TCC track, there will be a one Beta and then Final
Release as specified in the OCS development plan.



TCC Track Delivery

The products of the TCC track are the TCC console applications and the CTL. Each will be discussed only
briefly here since the role of the PD is to identify track interdependencies within the OCS. The internals and
software interface of the CTL and the specific design and layout of the consoles can not be delineated at this
time.

The SDD [1] provided a preliminary list of required hardware-oriented telescope control consoles. The list
that is shown here is from Chapter 5 of the SDD. The role of each console is also shown. The fact that the
screens are separate in this list is not a requirement that there be a separate console for each screen. Some
screens in the table may be combined within a single application.

Modified Table 5-2 from the SDD

Screen Name Description

TCS Control Console Primary operator interface. Allows the
operator to perform common tasks related
to normal telescope operations/observing.

TCS WFS Signal Routing Console Allows the operator to visually determine
and change the sources, destinations, and
routing of wave front sensor related errors
in the control system.

Alpha
User

Alpha
CTL

Alpha
TCC

TCC Track UOC Track

Beta
CTL

Consoles

Consoles

Beta
User
Consoles



* These requirement for these consoles might be satisfied by engineering consoles.

The table suggests that some console requirements may be satisfied by the engineering consoles constructed
by the other work package groups. The issue of who develops OCS consoles often comes up and the follow-
ing is the view of the OCS group. First, a few relevant OCS requirements [3].

Need:E Source:ASDD/URD Priority:1
Short Description: VUI Purpose

Description. The VUI of the OCS is required to provide the user interface and related concepts astronomers
and operations staff will use during the operations/maintenance phase of the Gemini Telescope’s life cycle
defined in the ASDD.

Need:E Source:URD18 Priority:2
Short Description: The VUI must provide an integrated set of observing tools.

Weather Monitoring Console A status console that provides information
from the Gemini and mountain top weather
monitoring equipment/sensors. Content
somewhat dependant on site.

Structure Temperature Monitoring Console Provides a visual display of structure tem-
perature distribution.

Mount Control Console A console that provides low-level mount
information.*

Cassegrain Rotator Control Console Provides status and engineering information
for the cassegrain rotator.*

Primary: Active Support System Provides engineering status and fine-grain
control of the primary mirror support sys-
tems. The functionality in these screens will
probably be important to normal telescope
operations.

Primary: Passive Support System

Primary: Air Support System

Secondary: Alignment System Console Provides engineering and fine-grain control
of the secondary hardware. The functional-
ity of these screens will be important to nor-
mal telescope operations.

Secondary: Chopper System Control

Secondary: Tracker Control Console

A&G: Main Console This screen provides a overall view of the
operational state of the A&G system.

A&G: WFS 1 Console Low-level screen specific to PWFS1.

A&G: WFS 2 Console Low-level screen specific to PWFS2.

A&G: Calibration Sensor Console Provides a detailed status display of the
operation and state of the calibration WFS.

Enclosure Console Provides operator access to the control of
the enclosure functions.

Alarm Interface An operator tool that focuses on the presen-
tation of system alarms and errors.

Status Interface Provides a single display of important tele-
scope status information. The error budget
display is located here if the error budget
display is possible.

Screen Name Description



Description. This requirement means that the software that is used when interactive observing and the soft-
ware that is used for planned observing must behave similarly, provide the same look and feel, and they must
function together to provide what seems to be one observing environment. This is often called application
interoperability. There should not be completely different sets of tools to support the various observing
modes required in this document.

These two requirements state that the OCS consoles must be observer/operator oriented and integrated with
the other OCS tools. The OCS group could formally define what it means to be integrated and define how a
console becomes part of the OCS, but this process would add significant work requiring the OCS group to
provide code, documentation, and assistance to the widely dispersed Gemini developers. This is not possible
under the current OCS development plan. The following statements summarize the OCS group approach
concerning the use and implementation of operator consoles.

• Engineering consoles for subsystems will not generally be duplicated by the OCS group. The operator will
use engineering screens for engineering and observing screens for his normal system interactions.

• Operator/observer functionality that may be present in an engineering interface may be duplicated in an
OCS console to improve the operator’s efficiency or effectiveness.

• The OCS group may choose to modify some engineering consoles to integrate them with the OCS tools if
that approach is the best for the OCS group.

• The OCS group will continue to work with the principal system groups to provide commands and status
that is oriented towards the observing process.

The prototype screens provide examples of how telescope information might be displayed on the screens;
hence, they provide a basic set of requirements for what kinds of functionality must be available in any GUI
toolkit used to construct the TCC consoles and applications.

• The ability to enter non-editable text with multiple styles and faces.

• Various kinds of buttons including momentary contact and toggle buttons.

• Combobox or menu buttons.

• Button groups with one of many and several of many behaviour. Also radio buttons or check boxes with
the same behaviour as button groups.

• Data entry fields that allow the user to type a value or push a button to increment or decrement the value of
the field.

• Various graph types including histograms, and strip-charts.

• Scrollable text displays. The toolkit must allow the user to interact with the contents of a text display to
select lines and to mark a line with a graphical marker such as a check mark.

• Drag sites and drop sites including toolkit support.

• Toolkit must allow relatively complex schematics to be drawn on the console with images, buttons, and
text connected by other graphical items such as lines or images.

• Toolkit must support the display of images and must allow interactions with images. For instance, it may
be useful to click on a location in the primary mirror figure display to see an x/y position or actuator pres-
sure on the mirror.

• Integrated help including spot-help and on-line manuals.

The baseline GUI toolkit, Ousterhout’s Tk, does not contain this functionality without a number of third
party additions.



Some functionality will be common to all consoles built by the OCS group including the consoles con-
structed as part of the User/Observing Console Track. The SDD and the OCS SDR documents show and
require some functionality that would be reasonably implemented in the CTL. The primary role of the CTL
is to provide a programming library that will tie together the functionality of the CLL and the chosen GUI
toolkit.

Console Interactive Graphical Control Semantics. The SDD and OCS requirements (SR23) state that
consoles should visually display information that allows the user to determine when commands are execut-
ing and completed. The support for this feature is found within the CLL. The CTL would provide a standard
way to display this information on a console screen.

Status/Health Interface. The CTL will integrate the status, alarm, and health functions of the CLL with the
chosen GUI toolkit functionality.

CLL and GUI Toolkit Integration. Most GUI toolkits provide similar functionality. The CTL must tie the
chosen GUI toolkit to the functionality of the CLL. For example, tieing a screen button callback to the CLL
ability to send a command will be needed. This functionality builds upon both the CLL and GUI toolkits and
belongs in the CTL.

Observing Tool Integration. Each OCS console must have the ability to include its configuration in the
Observing Tool Science Program. This feature is very dependent on the capabilities of the GUI toolkit. The
CTL will provide an interface to allow consoles to place their configurations into the Observing Tool and for
the Observing Tool to configure a console from the contents of a Science Program.

The CTL is viewed as an extension of the SystemSubject subsystem since the CTL is to provide common
capabilities for all OCSApp consoles. The new classes must be built upon the current SystemSubject classes
and the capabilities of the GUI toolkit. The physical model for this library will be made part of the detailed
design of the track.

The information that describes the public interface to the telescope and its subsystems must be available and
settled before the TCC track begins. The content of the public interface must be agreed upon before the con-
sole work begins. The preliminary PDF document for the TCS interface is to be available at the TCS SDR in
early September, 1995.

The quality of a graphical user interface is generally better when the users of a product are involved in its
development. However, the final users of the console products of the telescope control track, the telescope
operators, will not be available for user involvement and testing of the TCC consoles. The following is the
approach that will be used to provide the highest quality TCC consoles possible.

• The design and screen layout of the operator consoles will be guided by OCS programming team’s experi-
ence with similar systems. The OCS programmers will be responsible for producing a usable system.

• The design of the operator consoles will fold in the useful innovations of the operator interfaces of tele-
scope control systems the OCS programmers visit including Kitt Peak National Observatory; Keck
Observatory; Canada, Hawaii, France Telescope, and the Very Large Telescope.



• Any suggestions from the project scientists and the results of any discussions on operations will be folded
into the design of the operator consoles. Prototype screen designs for operator tools will be shown to and
reviewed by project scientists during weekly meetings.

• All consoles will adhere to Gemini GUI style standards.

To ensure that operations staff programmers can make changes that will inevitably be required to the TCC
consoles once the telescopes go on-line, the following is a TCC track implementation goal. The physical
design of the OCS consoles supports this goal.

• The implementation of the OCS telescope operator consoles will be done to make layout and cosmetic
changes to the consoles as simple as the chosen GUI toolkit allows.

The documentation for the TCC track will follow the documentation requirements in the OCS SDR docu-
ments (SR66, SR67, SR68). The TCC provides all three kinds of OCS products: the CTL software library,
user applications (consoles), and testing software for the CTL library.

This library will be released with the following documentation.

The Console Track Library Technical Document. This document describes how the library works.

The Console Track Library Programmer’s Document. This document describes how interactive con-
soles should be produced and how the programmer uses the CTT Library.

Some simple consoles will be provided to demonstrate the use of the console track library.

The Console Track Testing Manual. This manual will describe how to use the testing procedures required
for the acceptance tests of the CTT Library.

Each console or CTT application will be accompanied by user documentation. Some applications may have
standalone manuals but the use of the integrated OCS operator consoles will be covered in one operator
manual.

The Gemini Telescope Operator Manual. This manual will provide an overview of the control of the tele-
scope using the tools, applications, and consoles provided by the OCS group. Individual chapters will be
dedicated to the use of each of the consoles.

At this time there is no Gemini software requirement to provide automated testing of GUI programs.

The deliverables of the track are as follows.

• The CTL and testing software.



• The system operator consoles.

• The documentation listed in this document and the OCS Development Plan.



The User/Observing Console track (the Observing/User Screen Track in the Work Breakdown Schedule) is
one of the development tracks in the development plan for the Observatory Control System (OCS) of the
Gemini Telescope. The following statements are from the OCS Software Design Review Development Plan
[4].

This track develops the observing related consoles and Observing Tool screens associated with the site
instruments. Since the instruments are developed external to the OCS, the instrument consoles must be
developed later in the project. This track also provides the OCS PVWave interface. (page 3)

This phase provides the integrated consoles for the individual instruments. This capability is required
once instrument development nears completion. (page 7)

The primary purpose of the User/Observing Console (UOC) track is to provide the functionality that is
needed to create integrated OCS observer tools that can access and interact with all the principal systems.

This track must occur late in the OCS development plan in order to follow the development of the site instru-
ments that are being developed concurrently with the OCS. When this track commences each instrument
will be refined such that its operations and modes are known and tested. Its Parameter Description Form, the
public document describing and instrument’s public interface, will be completed and reviewed allowing this
track to begin.

This report presents the preliminary design of the UOC track to a depth such that the track can continue on
in its development independently of the other OCS tracks within the structure of the OCS development plan.
The following information is contained in this report.

• A high-level preliminary design for the track.

• The dataflow between applications in the UOC track and the other OCS tracks.

• The dataflow between applications in the UOC track and the other principal systems.

• A preliminary list of the known UOC consoles.



• The status of the information from other principal systems and the timetable for its arrival.

• Remaining decisions for the detailed design of the track.

The following development tasks are included in the UOC track.

• Provide a shell environment that can be used by operations staff to develop observing scripts that integrate
and interact with the principal systems. This shell environment will be based upon the PV-Wave product
standard specified by the Gemini Project.

• Provide the scripting level support for the Asynchronous Data Reduction Facility of the DHS.

A major goal of this track is to integrate the use of the site instruments with the other software provided by
the OCS Planned Observing Support track and the Observing Tool track.

• This track will produce any console applications that will be used by the operators and observers to inter-
act and control with observatory instruments.

• This track will produce any forms or other screens required for the site instruments to integrate with the
Observing Tool.

These last two bulleted items do not state that this track will produce these items for every instrument. Each
instrument’s functionality must be considered separately. Since they are completely undefined at this time it
is difficult to state with absolute confidence how each will be integrated into the OCS observing environ-
ment.

API Application Programmer Interface

CLL Command Layer Library

CTL Control Track Library

GUI Graphical User Interface

IOC Input/Output Controller

IOI Interactive Observing Infrastructure

OCS Observatory Control System

ODB Observing Database

PS Principal System

PSA Principal System Agent

SIR Status Information Record

SAD Status Alarm Database

SDRF Synchronous Data Reduction Functionality

TCC Telescope Control Console

UOC User/Observing Console
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The physical model of the OCS [7] describes the layering present in the OCS software system. For the TCC
track, the OCS consists of a set of cooperating applications. Each application is an instance of OCSApp and
it inherits all the functionality provided by the SystemSubject subystem. The physical model of the OCS as a
set of OCSApps is shown in Figure 1.

Observing consoles are an important part of the UOC track. Designing and implementing a console consists
of designing the AppSubject, Views, and Controller that are unique to the console application and imple-
menting them in the chosen language.

So the model for an OCSApp is the basis for the models for the specific console applications that will be
done during the UOC track. An example of modeling a console was discussed in [7] and will not be repeated
here.

The functionality of the SystemSubject (the Command Layer Library) provides the AppSubject objects with
command and status communications capabilities. This allows the console designers to focus on the design
of their application-specific code.



At this time, it is impossible to model the individual console instances in any further detail. Each console
detailed design will be accompanied by a physical model.

OCSApp Subsystems and Classes

The products of the UOC track are not too related to one another. The primary track work is focused towards
track integration and adding features and functions that depend strongly on the products of other Work Pack-
ages and other OCS tracks. Each kind of product will be viewed separately in the following sections.

The functionality of applications in the UOC track at the lowest level is based directly upon the functionality
of the Interactive Observing Infrastructure (IOI) track [2]. The IOI track provides UOC applications with the
following:

• Applications can send commands and acquire the status of the other principal systems.

• Applications can send commands and acquire the status of other OCS applications.

• Applications can wait for the completion of sequence commands executing in the other principal systems.

• Applications can subscribe to the status information of the other principal systems including alarms and
health.

• Applications acquire access keys through the IOI track functionality.

• Applications can log messages to a file and to the DHS logging system.
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The Command Layer Library of the IOI is dynamically linked with every console application in the UOC
track. The CLL API provides a programmer interface to the above functionality. A scripting interface (prob-
ably written in Tool Command Language) will also be available as a product of the IOI track.

The Software Environment of an Application in the UOC

A block diagram showing the relationship between the applications of the UOC track and the products of the
IOI and TCC track is shown in Figure 2. The software libraries produced as part of the Telescope Control
Console track and the Interactive Observing Infrastructure track are used to produce any UOC applications.
The Console Track Library (CTL), part of the TCC track, ties together the CLL and the GUI toolkit to pro-



vide common console functionality at a level higher than the CLL. The CTL provides the following capabil-
ities; other functions will be added during the detailed design of the CTL (See [6]).

• Console Interactive Graphical Control Semantics.

• Status/Health Interface.

• CLL and GUI Toolkit Integration

• Observing Tool Integration

The dataflow to and from the other principal systems through the CLL is also shown for completeness and is
not discussed here. (See [2].)

Instrument control must be integrated into the Observing Tool product. It is a design goal of the Observing
Tool to provide a clean, standard, documented software interface to allow this kind of modification to the
Observing Tool during its lifetime. How each instrument might be best integrated with the Observing Tool is
not known at this time since it is specific to each instrument. The following methods will be available
according to the SDD [1].

• It will be possible to drag and drop configurations to and from an application console.

• The Observing Tool may also include specific built-in screens for an instrument that are focused on com-
mon observing modes and tasks.

During this track the OCS infrastructure is supplemented with facilities that depend on the products of other
Work Package groups.

The Gemini software design has specified the PV-Wave product as a tool that will be used in the observer’s
environment to execute high-level observing and engineering scripts. PV-Wave provides extensive libraries
for image processing, plotting, and other data analysis tasks. The operations staff will use PV-Wave to write
interactive scripts that require the data analysis features provided by PV-Wave. The OCS must provide a PV-
Wave compatible interface into the Gemini software system to allow PV-Wave scripts to control the principal
systems.

PV-Wave applications do not need to access the CTL or GUI libraries since PV-Wave provides its own inter-
face to Motif. Figure 3 shows Figure 2 with only the IOI track CLL communication service connections. A
PV-Wave language library must be written to “glue” PV-Wave to the CLL library functionality. This will
allow PV-Wave scripts to send commands and receive the status information from the other principal sys-
tems. The functionality of the PV-Wave CLL interface library will match the functionality provided by the
CLL itself.



The Software Environment of an PV-Wave Application in the UOC

The majority of data analysis functionality required by the scripting requirement is to be provided by the PV-
Wave product. Previous reviews of the SDD suggested that in some cases, when processing is very CPU-
intensive or the problem to be solved is very astronomy-specific, it would be better to be able to hand-off
processing to a dedicated astronomical data analysis system such as IRAF. The Synchronous Data Reduction
Functionality (SDRF) was added to the design to provide this fallback ability.

The following are important design points.

• Each synchronous request will return at most one result consisting of the simple data types or an array of
simple data types. No images or image parts will be returned from or sent to the SDRF.

• The SDRF will be procedural based. A command and arguments will be sent to the SDRF. The command
may be represented by attributes and values.

• An interaction between the SDRF and a client will cause the client to block until the request is completed
(hence, the synchronous name).

• The SDRF functionality is only associated with the PV-Wave environment. It is not a part of the basic
CLL functionality.

Based on these design points the SDRF is modeled as client-server system where PV-Wave script-based
applications are the clients. The SDRF is a stand-alone server provided by the DHS. This is shown in
Figure 4.



This track must provide the PV-Wave language interface that will allow the programmers of the PV-Wave
scripts to synchronously send requests to the SDRF and receive replies.

The Software Environment of an PV-Wave Application in the UOC using the SDRF

At this time it is assumed that the OCS Message System (OCSService) will be used to allow a PV-Wave pro-
gram to communicate with the SDRF. A SDRF Service can be included in the IOI track to allow communi-
cation with the SDRF Server in case the interprocess communication with the SDRF is not based upon the
OCS Message System (OCSService). See [7]. This Service may be added to the IOI during the UOC track
rather than the IOI track if the SDRF is not available during the IOI track.

The UOC track applications can communicate with other OCS processes including:

• Observing Tool - to save and restore their configuration.

• Observing Database - to obtain shared system data.

• Any other OCS CLL-based application.

The UOC track applications must also communicate with the other principal systems.



• To send commands and receive synchronous and asynchronous responses.

• To receive status.

Inter-OCS communication uses the OCS Message System, and the software interface for these communica-
tions is provided by the Command Layer Library product. Both are part of the Interactive Observing Infra-
structure track. The requirements for this CLL interface are in the IOI track document [2].

The PV-Wave shell integration with the CLL only requires the programming interface provided by PV-Wave.
This interface is documented in the PV-Wave manuals.

The SDRF integration uses the PV-Wave library documents and interface and documents provided by the
DHS for the SDRF interface. At this time, it is assumed that the OCS Message System will be used to com-
municate with the SDRF server.

The User Observing Console track uses the functionality of the Interactive Observing Infrastructure track,
the Observing Tool track, and the Telescope Control Console Track. In addition, the instrument consoles
rely upon the development plans for the site instruments, and the PV-Wave SDRF relies upon work to be
done by the Data Handling System Work Package group. Consequently this track can not be completed until
all the depended upon products are completed. However, not all of the UOC products depend upon the com-
pletion of all the other products so it is possible to create beta and alpha releases of the UOC track.

The UOC track development plan will be phased to allow maximum track parallelism. The PV-Wave inte-
gration with the CLL can be completed first since it only depends upon the IOI and TCC track products
which precede this track in the OCS development plan (See [4]). The PV-Wave CLL integration will be
released in alpha and beta form before the UOC track is final.

A UOC observing instrument console and Observing Tool integration can be started once the PDF document
for the instrument is available. Instrument consoles will include prototype phases and alpha and beta
releases.

The creation of the SDRF integration library can take place once the use of the OCS Message System is
agreed upon. There will be a beta and alpha release of the SDRF before producing a final product.

This development plan suggests one or more alpha UOC track releases and at least one beta UOC release.

The products of the UOC track are the instrument consoles with Observing Tool support for instruments,
and the additions to PV-Wave. Each will be discussed only briefly here since the role of the PD is to identify
track interdependencies within the OCS. The internals and software interfaces for PV-Wave access to CLL
and the design and layout of the instrument consoles can not be delineated at this time.

The Gemini Project has produced a list of site instruments. There is also a list of instruments that will be
shared between Gemini and other observatories for Gemini north and south. The following lists show the



site instruments and shared instruments for both sites. The short programmer description of each instrument
is included. The site lists contain the set of instruments that must be integrated with the Observing Tool and
OCS during the UOC track. At this time it is not known how well integrated the shared instruments will be
with the OCS.

Cerro Pachon Site Instruments

Manua Kea Site Instruments

Southern Shared Instruments

Northern Shared Instruments

The issue of who develops OCS consoles often comes up. The following is the view of the OCS group with
regard to site instrument consoles. First, a few relevant OCS requirements [3].

Need:E Source:ASDD/URD Priority:1
Short Description: VUI Purpose

Description. The VUI of the OCS is required to provide the user interface and related concepts astronomers
and operations staff will use during the operations/maintenance phase of the Gemini Telescope’s life cycle
defined in the ASDD.

Screen Name Description

High Resolution Optical Spectrograph Single object optical wavelength instrument
that can operate as imager or spectrograph.

Multi-Object Spectrograph A mask-based instrument used to observe
many objects at one telescope target posi-
tion concurrently.

Mid-IR Imager Single object mid-IR instrument. Can oper-
ate as an imager or spectrograph.

Screen Name Description

Multi-Object Spectrograph A mask-based instrument used to observe
many objects at one telescope target posi-
tion concurrently.

Near-IR Imager Single object near-IR imaging instrument.

Near-IR Spectrograph Single object near-IR spectrographic instru-
ment.

Mid-IR Imager Single object mid-IR instrument. Can oper-
ate as an imager or spectrograph.

Screen Name Description

Phoenix IR Instrument

Screen Name Description

Michelle Single object mid IR spectrograph.



Need:E Source:URD18 Priority:2
Short Description: The VUI must provide an integrated set of observing tools.

Description. This requirement means that the software that is used when interactive observing and the soft-
ware that is used for planned observing must behave similarly, provide the same look and feel, and they must
function together to provide what seems to be one observing environment. This is often called application
interoperability. There should not be completely different sets of tools to support the various observing
modes required in this document.

These two requirements state that the OCS consoles must be observer/operator oriented and integrated with
the other OCS tools. The OCS group could formally define what it means to be integrated and define how a
console becomes part of the OCS and that may eventually happen, but this process would add significant
work requiring the OCS group to provide code, documentation, and assistance to the widely dispersed Gem-
ini developers. This is not possible under the current OCS development plan. The following statements sum-
marize the approach concerning the implementation of instrument-related consoles at this time.

• Engineering consoles for instruments will not generally be duplicated by the OCS group. The operator
will use engineering screens for engineering and observing screens for his normal system interactions.

• Operator/observer functionality that may be present in an engineering interface may be duplicated in an
OCS console to improve the observer’s efficiency or effectiveness.

• The OCS group will decide how to use the consoles provided by the instrument developers in conjunction
with the instrument developers.

• The OCS group will work with the instrument development groups to help them provide commands and
status that is oriented towards the observing process and the Gemini Control System software.

It has been decided that for site instruments it must be possible to acquire data using only an instruments
stand-alone console. There are a number of trade-offs when using consoles to acquire data.

• The features of the Observing Tool are not available. There is no Science Program or Observations that
exist past the observing session.

• The data and the data headers must contain all the observing information.

• The control and interactions with the other systems must be sequenced by the operators and observers.

The dataflow during stand-alone console observing is discussed in the Planned Observing Support track
since this capability is built upon a product of that track (See [5]).

The quality of a graphical user interface is generally better when the users of a product are involved in its
development. The final users of the instrument products of the UOC track, the astronomers, should be
involved in the development and testing of the UOC instrument consoles. The following is the approach that
will be used to provide the highest quality UOC consoles possible.

• The design and screen layout of the instrument consoles will be guided by OCS programming team’s
experience with similar systems, the engineering consoles for the instruments, and the knowledge and
documentation of the instrument developers. The OCS programmers will be responsible for producing a
final, usable system.



• The design of the instrument consoles will fold in the useful innovations of the operator interfaces of tele-
scope control systems the OCS programmers visit including Kitt Peak National Observatory; Keck
Observatory; Canada, Hawaii, France Telescope, and the Very Large Telescope.

• Any suggestions from the project scientists and the results of any discussions on operations will be folded
into the design of the instrument applications.

• A group of scientists interested in instrument console usability testing will be assembled for each instru-
ment. Prototype screen designs and alpha and beta versions of instrument applications will be tested by the
groups.

• All consoles will adhere to Gemini GUI style standards.

To ensure that operations staff programmers can make changes that will inevitably be required to the UOC
consoles once the telescopes go on-line, the following is a UOC track implementation goal. The physical
design of the OCS consoles supports this goal.

• The implementation of the UOC instrument applications will be done to make layout and cosmetic
changes as simple as the chosen GUI toolkit allows.

The documentation for the UOC track will follow the documentation requirements in the OCS SDR docu-
ments (SR66, SR67, SR68). The UOC provides all two kinds of OCS products: user applications (instrument
consoles and OT screens), and testing software for the PV-Wave access library to the CLL and SDRF.

This library will be released with the following documentation.

The PV-Wave CLL Integration Technical Document. This document describes how the PV-Wave lan-
guage is interfaces to the CLL library.

A set of testing scripts will be provided in PV-Wave scripting language to test the PV-Wave interface.

The PV-Wave Integration Testing Manual. This manual will describe how to use the testing procedures
required for the acceptance tests of the PV-Wave integration product.

Each console or UOC application will be accompanied by user documentation that covers the stand-alone
console and any instrument-related Observing Tool screens.

At this time there is no Gemini software requirement to provide automated testing of GUI programs.



The Scheduling Track is the last development track in the development plan for the Observatory Control
System (OCS) of the Gemini Telescope. The following statements are from the Software Design Review
OCS Development Plan [2].

This track provides the infrastructure and tools required to do the various kinds of telescope time
scheduling required in the SDD. (page 3)

This track provides the tools operators and staff will use to pick observations and develop observing
plans. This track must be completed to satisfy the planned observing requirements but is not needed
to use the telescope during the initial system testing phases. (page 7)

The job of the Scheduling track is to produce the tools that will be used by observers and staff to prepare
plans for effective use of the telescope.

This report presents the preliminary design of the Scheduling track to a depth such that the track can con-
tinue on in its development independently of the other OCS tracks. The following information is contained
in this report.

• A high-level preliminary design for the track.

• The dataflow between applications in the Scheduling track and the other OCS tracks.

• Remaining decisions for the detailed design of the track.

• Usability testing plans.

• List of required documentation.

GUI Graphical User Interface



OCS Observatory Control System

ODB Observing Database

ODBA Observing Database Agent

OT Observing Tool

PT Planning Tool

TAC Time Allocation Committee

[1] SPE-C-G0037, Software Design Description, 9/9/94, Gemini Controls Group, 1994.

[2] ocs.kkg.016, Observatory Control System Development Plan, Kim Gillies, Gemini Observatory Control
System Group, 1995.

[3] ocs.kkg.032, Interactive Observing Infrastructure Preliminary Design, Kim Gillies, Shane Walker,
Steve Wampler, Gemini Observatory Control System Group, 1995.

[4] ocs.kkg.038, Planned Observing Support Preliminary Design, Kim Gillies, Shane Walker, Steve
Wampler, Gemini Observatory Control System Group, 1995.

[5] ocs._sw.004, Observing Tool Track Preliminary Design, Shane Walker, Kim Gillies, Steve Wampler,
Gemini Observatory Control System Group, 1995.

First Release — July 28, 1995. Pre-release draft.

PDR Release — August 16, 1995.

The Gemini 8m Telescopes are scheduled from initial proposal to telescope time using three phases:

• Long term scheduling - performed across an entire semester. Here all submitted proposals are reviewed,
ranked, and accepted or rejected as candidates for the observing season. Long term scheduling involves a
number of groups including National TACs from the partner countries, a central Gemini TAC, the staff
astronomers and the observatory directors.

• Medium term scheduling - performed across a short number of weeks and blocked out by sidereal time.
Medium term scheduling is performed by the staff astronomers and the observatory directors.

• Short term scheduling - performed across an observing session. Short term scheduling determines the
actual order of observations that are performed by the system and should be distinguished from the plan-
ning process. Planning involves querying the Observing Database to select a set of eligible observations.
Many plans can be created ahead of time. Deciding which observations are next in the queue when actu-
ally executing a plan is the short term scheduling process.

Most of the process of performing long and medium term scheduling is outside the scope of this work pack-
age, although it must be supported by the Gemini project. Scheduling tools being developed by ESO and
HST are under consideration to fulfill the long and medium term requirements.



The primary goal of the scheduling track is the direct support of short term planning and scheduling. A sec-
ondary goal is to make any decision support software (such as processes for checking guide-star suitability)
available for possible use during long and medium term scheduling. This secondary goal must not interfere
with the primary goal.

There are no trade studies expected during the Scheduling track. A decision needs to be made as how to best
support the long-term and medium-term scheduling requirements that are a expected to exist outside of the
scope of the OCS work package.

The Scheduling track is built directly upon the functionality of the Interactive Observing Infrastructure (IOI)
track [3], the Planned Observing Track [4], and the Observing Tool Track [5]. The primary product of the
Scheduling Track is the Planning Tool (PT). It is considered to be an extension of the Observing Tool (OT),
though it will be developed separately, after the remainder of the OT is complete.

The PT supports effective scheduling and rescheduling of short term plans. The PT is used to match program
requirements against existing and expected conditions, and check target availability and guide star suitability
in order to construct or modify a plan for scheduling the telescope. Once the plan has been created or
updated with the PT, it can be executed and monitored with the OT.

The PT is essentially a database query interface that is used to facilitate the planning process. The set of Sci-
ence Programs and Plans that are accessible depend upon the permissions of the user. When used by staff, all
the programs in the Observing Pool are available. Non-staff observers only have access to their own pro-
grams. The PT is used to select among the available programs based upon various criteria, such as instru-
ment and seeing conditions required. The output of the PT is a Science Plan, which can be edited or executed
using the remainder of the OT.



The Software Environment of the Scheduling Track

Figure 1 diagrams the data that is passed between the Planning Tool and the Observing Database (ODB).
Instead of showing implementation details, we concentrate on depicting the information that must ultimately
pass between the OT and the ODB.

The Planning Tool uses the Status/Alarm Database (SAD) for queries involving the suitability of observa-
tions in the Pool to the current conditions. Catalog information includes guide star parameters and science
target information.

The Planning Tool interfaces directly with the Observing Database, using the OCS Message System. The
ODB presents the OT (and hence PT) with an interface to the ODB that provides access to an observer’s sci-
ence programs and other information, but hides most of its contents [4]. The PT does not interact with any
other applications.

The Planning Tool development is based on a phased-released model. An alpha release of the tool only pro-
vides limited functionality but allows the construction of Plans from Science Programs. A beta release pro-
vides limited support for checking target/guide star parameters and adds support for criteria-based selection
of observation. The final release refines the components developed for the beta release.

The Scheduling track relies upon the functionality of the Interactive Observing Infrastructure track, Planned
Observing track and Observing Tool track and must follow those tracks in the development process. The
OCS development plan is discussed elsewhere [2].



The Scheduling track uses the same GUI interface testing procedures as the Observing Tool track.

The documentation for the Scheduling track follows the documentation requirements in the OCS SDR docu-
ments (SR66, SR67, SR68). The Scheduling track extends the Observing Tool and so must extend its docu-
mentation. The documentation will include:

• User’s guide

• Installation and maintenance guide

• On-line help

The Scheduling Track deliverables are the Planning Tool extension to the Observing Tool, and the documen-
tation discussed in the previous section.





To implement planned observing, the OCS provides a way to save the system configuration required to pro-
duce a desired observational setup. The configuration is then played back at a later time to setup the princi-
pal systems and obtain the science data.

The OCS Configurable Control System uses a process called the sequence executor to provide the playback
functionality. Each sequence executor uses a text script called a recipe to describe the high-level structure
and sequencing of the principal systems. The recipe sends system-independent Sequence Commands (SC) to
the principal systems. A sequence command consists of an opcode and an optional argument. A configura-
tion can be viewed in our system as a set of system dependent commands in the form of attributes and val-
ues. The recipe operates upon and processes configurations. The recipe can also send system dependent
commands to implement changes to the principal systems during an observation. It is our goal that recipes
(besides the Observe script) be written entirely in terms of Sequence Commands and system independent
sequence command status. The definitions in this paper allow that to be true.

The sequence commands were first defined in the SDD [3]. This paper updates the definitions of the
sequencer command opcodes, discussing what principal systems must do when they receive each one. In
addition, mandatory status variables are defined that describe the state of an ongoing observation. An imple-
mentation described in terms of CAD and CAR records is also included along with standard names for the
sequence command CAD records, CAR records, and status variables.

This paper assumes knowledge of CAD/CAR and SIR records [2]. The use of these records was introduced
after the SDD and they are very important in the implementation of sequence commands.

ARD Action Response Database



CAD Command Action Directive

CAR Command Action Response

CCS Configurable Control System

IOI Interactive Observing Infrastructure Track

OCS Observatory Control System

ODB Observing Database

PS Principal System

PSA Principal System Agent

SIR Status Information Record

SAD Status Alarm Database

SC Sequence Commands

SDD Software Design Description
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Configuration Part — The part of a configuration, the set of attributes and values, that is associated with a
single principal system function. A configuration part is equivalent to a command if it can be mapped to a
CAD record in the PSA (for EPICS-based principal systems). The term command and configuration part are
often used interchangeably but not all configuration parts are commands.

Entire Configuration — All the configuration parts make an entire configuration.

Principal System Configuration — The subset of a configuration that is destined for a single principal sys-
tem. Or all the configuration parts that go to one principal system.

The sequence command design has been modified from the original SDD version to reflect a change in
where the principal system command interface resides. This change is outlined in general below. The con-
fig(apply) sequence command is unique in many respects and is discussed separately.



In the original SDD the activities of the Principal System Agent (PSA) were implemented in command serv-
ers that were present in each of the principal systems. Only sequence commands passed between principal
systems. A principal system (PS) was to receive a configuration, apply it, and tell the OCS when the applica-
tion of the configuration was completed. The system specific attribute/value layer interface and functionality
was entirely within a PS.

The principal system command interface is now at the attribute/value layer and in all known cases this inter-
face is implemented upon EPICS Channel Access and CAD records. The principal systems are required to
make action information available to the OCS and other principal systems using EPICS CAR records. Status
information is published using SIR records. The CAD/CAR/SIR records make up an EPICS-based principal
system’s entire public interface.

The IOI design dictates that no knowledge of the configuration abstraction be known in the attribute/value
layer below the configuration layer. Only the config(apply) sequence command has a configuration as an
argument so this command must be specially treated in the OCS. Principal system configurations are broken
into configuration parts, which if mapped to a CAD record in a principal system’s PSA, are applied at the
attribute/value layer interface and become system dependent commands in the EPICS system (see
Section 5.2).

A principal system still needs to know the opcode of a sequence command it is being requested to perform
so it is necessary that the opcodes make their way into the PS. Therefore, the opcodes must be viewed in the
attribute/value layer as commands that all systems must implement in a uniform way.

As system-dependent commands, the OCS must know when a principal system has completed a particular
sequence command. The mechanism provided in the Gemini system for this functionality is the CAR record
and it should be used to notify the OCS and others of the completion of sequence commands.

An implementation of sequence commands using CAD and CAR records is assumed in the following dis-
cussion. A prototype implementation will be presented in a later section of this paper.

Almost all of the sequence commands are very high-level and global, meaning that the execution of the com-
mand influences the operation of the entire principal system. A PS can execute at most one instance of a glo-
bal command at a time and it is difficult to imagine scenarios where two sequence commands would be
executing simultaneously in the same principal system. The one problematic exception is config(apply).

A principal system configuration consists of one or more configuration parts (see the definitions in
Section 4.0 on page 2). Principal system configurations are applied by the OCS Principal System Agent
process in two steps:

Each configuration part is set and validated independently. This is called the preset step.

Next, the config(apply) sequence command is issued. This command causes the target system to match
the configuration specified by the preset step.

This two phase application enables the principal system to use writing of the config(apply) CAD to perform
any sequencing it might need. Otherwise, principal systems would have to be designed so that they could
accept any ordering of system-dependent commands.

The OCS can monitor completion through the config(apply) action variable or the individual part action
variables. It clearly must be possible for systems to accept and apply more than one configuration at a time
and this is what makes config(apply) different from the other sequence commands.



The sequence commands from the SDD are shown in Table 1 on page 4 with the Version 3 definitions of
their opcodes. Most of the command definitions are the same as the SDD definitions. Late in the SDD docu-
ment preparation Steven Beard noticed that the definitions of the config(observe) and config(endobserve)
sequence commands did not always allow optimum performance from an instrument. It is sometimes impor-
tant to allow observing to continue when a detector is reading out, and it is vitally important that the next
config(observe) not begin until the last image is out of the detectors. For this reason, the observing sequence
has been modified significantly in this version and is discussed in Section 7.0 on page 7.

The definitions of the sequence commands are not attempting to enforce a state machine design on principal
systems. The principal systems should assume that any sequence command can arrive at any time. Any
restrictions a principal system wishes to place on the ordering of sequence commands should be noted in the
systems Parameter Definition Format document so it is visible to all.

Note: The config(check) and config(endobserve) sequence commands have been removed from the list.
They no longer have any purpose in our system.

Sequence Command definitions (revision 3.0)

Event
(Configuration
Command)

Command
Arguments

Action/
Definition

config(test) A system should assume it has just been switched on and perform self-
tests for its software and hardware systems to check that it is healthy. A
config(test) could be the first step in a config(init) following a reboot
but it is not required to be the first step. Following a config(test) a sys-
tem should be ready to accept commands. config(test) should not
require it be followed by config(init) or config(reset).

This command completes successfully when it passes its tests or it fails
during execution and enters the ERROR state in the test CAR record.

config(init) The system should execute its most complete initialization sequence.
This can include rebooting and reloading any internal setup files (a
hard init).

The command completes successfully when the system it determines it
is initialized or it fails during execution and enters the ERROR state in
the init CAR record.

If a system reboots as part of its config(init) it must continue the con-
fig(init) action following the reboot. This means that the init CAR
record must be set to BUSY and then IDLE following a reboot. See
notes following this table.

config(reset) A system should do whatever is needed to reset its internal system state
to the state it had at start-up and become ready for new commands (a
soft init). It should NOT reboot or re-read any setup files.

This initialization command is less severe than config(init) and con-
fig(reset) should be the final phase of config(init).

The command completes successfully when the system determines it
has completed reset or it fails during the process and enters the
ERROR state in the reset CAR record.



config(park) A system should adopt an internal configuration in which it can be
safely switched off. This will occur at the end of an observing session
or when a principal system will enter a time of extended disuse.

The command completes successfully when the system is ready to be
powered down. This command fails if a problem is encountered while
preparing to park. It then uses ERROR in the park CAR record to
return the fault.

config(apply) The apply command represents the second part of the two phase com-
mand application sequence. A series of system dependent CAD
records are first preset independently by the OCS PSA. This essentially
builds up a new desired configuration which must be matched by the
principal system. The the apply command is issued to cause the system
to take any actions required to match the configuration built up by the
series of presets.

Principal systems should cause the apply CAR record to become
BUSY whenever any of the actions associated with the preset com-
mands are busy. The apply command completes successfully when all
the actions have completed.

config(verify) This command indicates to a principal system that verification of con-
figurations is underway by the OCS, operators, and observers. A prin-
cipal system must be capable of executing changes to its state during a
verify, and it must also update its status and state in the ODB SAD and
ARD.

Interactive commands must always be accepted by a system.

This command only provides information for principal systems and
requires no special action although a system may wish to have special
actions for config(verify).

A principal system should successfully complete immediately after
noting the config(verify) command. Therefore the verify CAR record
should transition briefly to BUSY and then to IDLE.

config(endverify) This command indicates to a system that verification of configurations
is finished.

This command can be executed at any time.

This command only provides information for principal systems and
requires no special actions although a system may wish to have special
actions for config(endverify).

A principal system should successfully complete immediately after
noting the config(endverify) command. Therefore the endverify CAR
record should transition briefly to BUSY and then to IDLE.

config(guide) This command indicates to the principal systems that it should do
whatever is needed to start the guiding operation.

The command completes successfully when the config(guide) actions
have begun successfully. The guide CAR record should transition
briefly to BUSY and then to IDLE once the guiding operations have
begun properly and it is safe for the sequence executor to go on.

Systems that choose to ignore the config(guide) command should go
BUSY briefly followed by the transition to IDLE.
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config(endguide) This command indicates to all principal systems that they should stop
their guiding actions. A principal system should execute any particular
behaviour that should occur when the telescope stops guiding.

The endguide CAR record should transition briefly to BUSY and then
to IDLE. Systems that choose to ignore the config(endguide) com-
mand should go BUSY briefly followed by the transition to IDLE.

config(observe) ObservationID This command indicates that data acquisition should begin in an instru-
ment system based on its current internal values.

Instruments executing a config(observe) remain busy until they have
completed the configured observation. The sequence executor uses
completion of config(observe) to determine when an observation
completes.

The OCS uses the observe CAR to determine when the integration is
complete and the data is out of the instrument and in the DHS. The
observe CAR must remain BUSY for this entire period. In addition,
instruments are required to update three status values (SIR records)
corresponding to the current phase of the observation. These are PREP
(preparing to acquire), ACQ (acquiring), and RDOUT (reading out the
detector and transferring data). These are detailed further in
Section 7.0 on page 7.

Systems other than instruments can view config(observe) as informa-
tional. For those systems the observe CAR record should transition
briefly to BUSY and then to IDLE.

The OBSERVE command argument is an identifier that should be used
by the instrument when it sends its data to the DHS. The DHS uses the
ObservationID to create the data files in a predictable way (to be deter-
mined during detailed design).

config(pause) This command indicates that a system should do whatever is appropri-
ate for it to pause data acquisition. Pause indicates to the principal sys-
tem that the user intends on continuing at a later time.

The command completes successfully when the config(pause) actions
have begun successfully.

Systems that choose to ignore the config(pause) command should
immediately complete successfully by setting the pause CAR record
briefly to BUSY and then to IDLE

config(continue) This command is the reverse of pause. A system should do whatever is
appropriate for it to resume data acquisition.

The command completes successfully when the config(continue)
actions have taken place successfully.

Systems that choose to ignore the config(continue) command should
immediately complete successfully by setting the continue CAR record
briefly to BUSY and then to IDLE
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For maximum efficiency at the telescope it must be possible to configure the principal systems efficiently.
Here are some common observing situations that came up during SDD that the OCS must be able to
sequence:

• An observation consists of a series of science frames. Between frames a filter change is applied. The appli-
cation of the filter change is faster than the read-out of the detector so the system is ready to start the next
config(observe) before the last read-out is complete.

• Sometimes observers will want to move to the next observation as quickly as possible, without waiting to
perform detailed quality control on previous observations. In this case, the OCS can begin to configure the
next observation while waiting for the detector to complete its read-out.

• Some observers do care about quality control, and for some specific instruments an apply might interfere
with the detector read-out.

The common requirement in these examples is that the OCS must have more information about what is
going on in the instrument in order to sequence the observations. The observe CAR alone does not offer
enough granularity to handle the first two cases. It must remain BUSY the entire time that the instrument is
setting up, exposing, reading out, and transferring data to the DHS.

To solve this problem, all instruments, both optical and IR, must maintain three status variables correspond-
ing to their current activities:

• PREP. This status variable is ON while the detector is preparing to acquire a science frame. This is the
period between the start of an observation and data acquisition, and could involve an initial reset or read of
the detector.

• ACQ. The ACQ variable is ON while the detector is acquiring science data. For an optical detector, this is
the time when the shutter is open. For IR instruments, it is the entire period while exposures are being
made.

config(stop) This command indicates that a system should stop the current data
acquisition process normally, as if it were the end of the data acquisi-
tion period.

The command completes successfully when the config(stop) actions
have taken place successfully. The OCS would then notice the observe
CAR record go to IDLE and would send the config(endobserve).

Systems that choose to ignore the config(stop) command should
immediately complete successfully by setting the stop CAR record
briefly to BUSY and then to IDLE

config(abort) This command indicates that a system should stop the current data
acquisition process immediately and discard any data.

The command completes successfully when the config(abort) actions
have taken place successfully. The OCS would then notice the abort
CAR briefly go through BUSY and the observe CAR record go to
IDLE. The recipe would then do whatever abort recovery is required.

Systems that choose to ignore the config(abort) command should
acknowledge the command by setting their abort CAR record briefly to
BUSY and then to IDLE.
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• RDOUT. While the detector is reading out and data is being transferred to the DHS, this variable is ON.

The OCS can use changes to these status variables to obtain finer grained control. For instance, when the
ACQ flag transitions from ON to OFF, it may possible to apply a new configuration to the instrument, even if
RDOUT is still ON. This case is illustrated in Figure 1 below.

ICS actions when observations follow one another quickly and apply overlaps readout.

In the figure the CAR records are assumed to be IDLE when not BUSY, and the SIR records are OFF when
not ON. Note that the observe CAR stays on for the duration of each observation. Without the status records,
the recipe controlling the observation could not safely issue the second config(apply) until the observe CAR
went IDLE.

Of course, this method simply makes overlapping the apply with the readout possible. The observer will
specify restrictions on when this may occur in the observation configuration using the Observing Tool. For
some instruments, it may never be a good idea to allow any activity during the readout. In this case the recipe
would delay the next config(apply) until the endobserve CAR is IDLE.

config(observe)

config(apply)

apply observe
CARs

prep acq rdout

config(observe)

config(apply)

CAR record BUSY

SIR record ON

SIRsObservation 1 Observation 2



The following sections cover a few remaining details and notes.

Much of the discussion so far has tacitly assumed an optical instrument is in use. However, for IR instru-
ments, the definitions of PREP, ACQ, and RDOUT should remain exactly the same. ACQ should transition
to ON when acquiring science data, and RDOUT should transition to ON when reading out the detector.
This implies that both ACQ and RDOUT will be ON simultaneously for IR instruments, but this will not
cause a problem for the OCS.

Provided every instrument follows the definitions of config(observe), PREP, ACQ, and RDOUT, the OCS
will be able to sequence any instrument efficiently. Namely,

• PREP, ACQ, and RDOUT should each transition from OFF to ON and back to OFF again once dur-
ing an observation at the appropriate times.

Note that this rule applies even when the instrument is paused. If the OCS cannot rely on a set pattern of
transitions for PREP, ACQ, and RDOUT, then sequencing becomes much more difficult if possible at all.

With the introduction of the ACQ status variable, the OCS now has a much more accurate picture of when
header information should be obtained. When ACQ goes from OFF to ON at the beginning of the observa-
tion, the OCS can snapshot header data as close to the actual time that shutter opens as possible. Likewise
for the ON to OFF transition at the end of the observation.

This paper has suggested that the approach to implementing sequence commands in a Gemini EPICS-based
principal system is to use CAD and CAR records. The approach suggested here is to use a single CAD
record and a single CAR record for every sequence command. Since all systems must implement the
sequencer commands it is reasonable to specify a standard name for a CAD record for each sequence com-
mand opcode as well as a CAR record name for each opcode.

To save characters, the command CAD record names are limited to the first 6 characters of the opcode. The
CAR record name is found by adding C to the CAD record name.

Standard Sequence Command CAD/CAR Record Names

Sequence
Command Opcode

CAD Record
Name

CAR Record
Name

config(test) test Test TestC

config(init) init Init InitC

config(reset) reset Reset ResetC

config(park) park Park ParkC

config(apply) apply Apply ApplyC

config(verify) verify Verify VerifyC

config(endverify) endverify EndVer EndVerC



Note that CAD records come equipped with an opcode argument. Since there is a separate CAD record for
each sequence command, the opcode argument is meaningless for sequence commands.

A sequence command monitor is prototyped in Figure 2. Since this principal system is an instrument, the
monitor also includes the three observation status SIR records. The information from the CAR action records
will allow the operator to quickly view what is happening in the principal systems allowing him to monitor
the progress of recipes. A more realistic console might display the CAR records for all the operating princi-
pal systems at one time.

A similar console could be constructed to allow testing of sequence commands and interactive observing
using the sequence opcode commands. In fact, this could be one method for observing during the commis-
sioning operational phase.

Example of a Sequence Command Monitor Console

Some final notes on implementing sequence commands and future work.

Guiding Command. The config(guide) command may not be adequate for the recipes that will run on the
telescopes. It may be necessary to introduce additional opcodes or modify the definition of the config(guide)

config(guide) guide Guide GuideC

config(endguide) endguide EndGui EndGuiC

config(observe) observe Observ ObservC

config(pause) pause Pause PauseC

config(continue) continue Contin ContinC

config(stop) stop Stop StopC

config(abort) abort Abort AbortC

Sequence
Command Opcode

CAD Record
Name

CAR Record
Name

ICS GMOS

Test

Init

Reset

Park

Apply

Verify

End Verify

Guide

EndGuide

Observe Pause

Continue

Stop

Abort

Prep

Acq

Rdout



sequence command once the interactive operations that take place to setup an observation are a little better
known. The OCS staff is currently meeting with project scientists and others regularly to discuss probable
telescope operational procedures. Any changes to the sequencer commands will be under the control of the
Gemini Controls Group processes and reviewed. No changes are known or expected at this time.

Ignored Commands. All systems must implement all the sequence command opcodes. The operation of the
recipe in the sequence executor relies on responses from all principal systems. A principal system that
doesn’t care about a command should indicate completion immediately by toggling the appropriate CAR
record to BUSY and then IDLE.

Already There. When a system is requested to perform an action and it finds that it doesn’t need to do it
because the action is not required, it must still indicate completion immediately by toggling the appropriate
CAR record to BUSY and then IDLE. For instance, if a filter wheel is requested to move to position 4 and
the controlling system notes that it is already at position four, the controlling system must still toggle the
CAR record from BUSY to IDLE. This is true whenever any CAD/CAR command is applied.

Errors in Sequence Commands. The CAR protocol defines that the only use of the ERROR state is to
notify operators that an error occurred during the execution of an action. All other errors should cause the
rejection of the sequence command opcode in its CAD record.

Acceptance/Rejection of Sequence Commands. As with all CAD records a principal system has the capa-
bility of accepting and rejecting the sequence commands when they arrive at the principal system. Rejection
should occur if a system is unable to perform the requested sequence command opcode. For instance, if one
sent a config(observe) to an instrument when it was reading out a detector (executing config(endobserve)), the
instrument could reject the config(observe).


