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The complexity of computing conventional matrix multiply wavefront reconstruc-
tors scales as O(n3) for most adaptive optical (AO) systems, where n is the number
of deformable mirror (DM) actuators. This is impractical for proposed systems with
extremely large n. It is known that sparse matrix methods improve this scaling for
least squares reconstructors, but sparse techniques are not immediately applicable
to the minimum variance reconstructors now favored for multi-conjugate adaptive
optics (MCAO) systems with multiple wave front sensors (WFS's) and DM's.
Complications arise from the non-sparse statistics of atmospheric turbulence, and
the global tip-tilt WFS measurement errors associated with laser guide star (LGS)
position uncertainty. In this paper, we describe how sparse matrix methods can
still be applied by use of a sparse approximation for turbulence statistics, and by
recognizing that the non-sparse matrix terms arising from LGS position uncertainty
are low rank adjustments that can be evaluated using the matrix inversion lemma.
Sample numerical results for AO and MCAO systems illustrate that: The approxi-
mation made to turbulence statistics has negligible e�ect on estimation accuracy,
the time to compute the sparse minimum variance reconstructor for a conventional
natural guide star (NGS) AO system scales as O(n3=2) and is only a few seconds
for n = 3500, and sparse techniques reduce the reconstructor computations by a
factor of 8 for sample MCAO systems with 2417 DM actuators and 4280 WFS
subapertures. Extrapolating to 9700 actuators and 17120 subapertures, we pre-
dict a reduction by a factor of about 30 or 40 to 1. c2002 Optical Society of America

OCIS codes: 010.1080
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1 Introduction

Adaptive optical (AO) systems are used in ground-based optical and near-IR astronomical tele-
scopes to correct for the phase aberrations induced by atmospheric turbulence [1, 2, 3]. These
aberrations are compensated by adjusting the �gure of a deformable mirror (DM) to null the
residual phase errors as measured by a wave front sensor (WFS). The control algorithm used to de-
termine the DM commands from the WFS measurements is frequently referred to as the wavefront
reconstructor. Analytical and numerical methods for optimizing and evaluating reconstructors are
very well developed, both for existing conventional AO systems [4, 5, 6, 7], proposed AO systems
with multiple laser guide stars (LGS's) [8, 9], and proposed multi-conjugate AO (MCAO) systems
that would employ multiple DM's and WFS's to compensate for atmospheric turbulence across
an extended �eld-of-view [10, 11, 12, 13, 14]. In comparison, work on eÆciently computing and
implementing reconstruction algorithms is at a less advanced state. Since wavefront reconstruction
is a linear estimation problem for the case of astronomical AO, the DM actuator command vector
a can be determined from the WFS measurement vector s using a matrix multiply. The complexity
of computing the reconstruction matrix using standard methods scales as O(n3), where n is the
dimensionality of a. This will become impractical for proposed MCAO and \Extreme" AO (ExAO)
systems on extremely large telescopes (ELT's), where n may be on the order of 10; 000 or even
100; 000.

Fortunately, it has been known for some time that sparse matrix techniques may be used to
signi�cantly reduce the numerical complexity of classical least squares reconstruction algorithms,
which determine a by minimizing the RMS value (or L2 norm) of the residual measurement of
s [15]. This method exploits the fact that the DM-to-WFS inuence matrix is sparse for many
AO component technologies, so that an adjustment to a single DM actuator e�ectively inuences
WFS measurements from only a few neighboring subapertures. The essential reason this reduces
computational complexity is the fact that a sparse, banded matrixM may be factored asM = LLT

with L sparse and lower triangular, so that the system x = M�1y can be solved for x in terms of
y by �rst solving Lv = y and then LTx = v by back substitution. Sparse matrix reconstructors
and other eÆcient approaches such as Fourier transform reconstructors, multi-grid methods [16],
and preconditioned conjugate gradient algorithms [17] are promising approaches for future ExAO
systems, since theory and simulation indicate that conventional least squares reconstruction is near-
optimal for this class of AO [18]. Sparse matrix methods have also been proposed for eÆciently
deconvolving a known, but spatially varying, point spread function from a blurry image [19].

However, sparse matrix methods are not immediately applicable to reconstruction algorithms
for MCAO systems for several reasons. Conventional least squares reconstructors generally perform
poorly for MCAO, and a regularized, or modally �ltered, algorithm is necessary to obtain optimal
or near-optimal performance [20]. Two more satisfactory approaches are SVD �ltering of the re-
constructor to suppress poorly sensed modes and minimum variance wavefront reconstruction [7],
but both techniques yield full matrices that are incompatible with the direct application of sparse
matrix techniques. Secondly, the position uncertainty problem for laser guide stars introduces high
levels of full aperture tip/tilt-measurement noise in LGS WFS measurements. The global tip/tilt
terms must be �ltered from the LGS measurements, and auxiliary tip/tilt natural guide star (NGS)
WFS's must be included in the MCAO system to measure the full-aperture wavefront tilt. Both
of these e�ects complicate the structure of the DM-to-WFS inuence matrix, with the result that
sparse matrix methods once again cannot be immediately applied.

This paper describes techniques for dealing with these diÆculties to obtain a representation for
the minimum variance wavefront reconstructor that can be eÆciently evaluated using sparse matrix
methods, even for the case of a MCAO system. First, the non-sparse regularization term appearing
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in the reconstructor is replaced by a sparse approximation. In a heuristic sense this approximation is
equivalent to replacing the Kolmogorov ��11=3 spatial power spectrum for atmospheric turbulence
(where � is a spatial frequency variable) with ��4. It may be a surprise that this approximation
has only a negligible impact upon the performance of the reconstructor, increasing the mean-square
residual phase error by from 0.1% to no more than 1.5% for all of the cases we have evaluated.
Secondly, the non-sparse matrix terms appearing in the minimum variance reconstructor due to
LGS position uncertainty and the inclusion of NGS tip/tilt WFS's in the AO system are of low
rank, which allows sparse matrix methods to still be applied with the aid of the matrix inversion
lemma. Briey, this lemma implies that if U and V are matrices with only a few columns and
are dimensioned such that M + UV T is de�ned, then (M + UV T )�1 is equal to M�1 + U 0V 0T ,
where the matrices U 0 and V 0 have the same dimensions as U and V . It follows that if M has
a structure that allows the system x = M�1y to be solved eÆciently (e.g., a sparse matrix), the
system x = (M + UV T )�1 can be solved eÆciently as well.

For sample cases involving NGS and LGS MCAO systems with about 2400 total DM actuators
and 4280 WFS subapertures on a 16 meter telescope aperture, the above methods provide about
a factor of 8 improvement in the time needed to compute the minimum variance reconstructor.
Extrapolating to a 32 meter MCAO system with about 9700 actuators and 17120 subapertures
we predict an improvement by a factor of about 30 or 40, although at present our computer does
not have suÆcient memory to evaluate this case. For ExAO the computation requirements for this
sparse implementation of the minimum variance reconstructor are comparable to results obtained
previously for conventional least squares reconstruction, allowing reconstructors to be computed in
only a few seconds for very high-order AO systems.

The remainder of this paper is organized as follows. Section 2 reviews prior results on the use
of sparse matrix techniques for least squares reconstructors. Section 3 derives ones of the standard
formulas for the minimum variance reconstructor, which decomposes into two parts: Estimating
the full turbulence pro�le, and then �nding the DM actuator commands that best correct for this
pro�le over the desired �eld-of-view [13]. The sparse matrix methods for eÆciently evaluating these
two operators are presented in Sections 4 and 5. Section 6 summarizes sample simulation results
obtained on reconstructor performance and computation requirements for a range of conventional
AO, ExAO, and MCAO system con�gurations.

2 Least Squares Wavefront Reconstruction

In this section, we review the application of sparse matrix techniques to classical least squares
wavefront reconstruction, as �rst presented in [15]. The improvements that can be obtained in
computational eÆciency are very impressive, at least for the case of a conventional AO system with
a single DM and a single NGS WFS.

Classical least squares wavefront reconstruction is based upon the WFS measurement model

s = Gaa+ n: (1)

Here s is the WFS measurement vector, a is the DM actuator vector to be estimated from s,
Ga = @s=@a is the DM-to-WFS inuence matrix, and n is additive, zero mean measurement noise.
All components of n are assumed to be uncorrelated and of equal variance. Note that atmospheric
turbulence is not included in this measurement model, and the goal of least squares wavefront
reconstruction is simply to determine an estimate ba of a that yields the best mean-square �t to s
in Eq. (1). The value of ba is given formally by the expression

ba = argmin
a
jjs�Gaajj2; (2)
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and this minimization problem can be solved by determining the value of a for which the partial
derivatives @jjs � Gaajj2=@a are identically zero. This is a standard linear least squares problem,
since the merit function to be minimized is quadratic in a. The minimum norm solution is given
by the formula [4, 5, 6] ba = (GT

aGa)
yGT

a s; (3)

where the superscript \T" denotes the transpose of a matrix or vector, andM y is the pseudo-inverse
of the matrix M . Although this is nearly the most elementary reconstruction algorithm possible,
least squares estimation has been applied very successfully in many hardware systems and remains
perhaps the most commonly used AO control algorithm even today.

The classical least squares reconstruction algorithm is of complexity O(n3a) to compute and
O(n2a) to apply when implemented using conventional matrix inversions and matrix/vector mul-
tiplies, where na is the dimension of the DM actuator command vector a [21]. This becomes a
signi�cant practical limitation for values of na in excess of about 1000, let alone the values of
10; 000 or even 100; 000 presently under consideration for so-called \extreme AO" systems. Fortu-
nately the matrix Ga is highly sparse for many WFS and DM technologies, since each individual
DM actuator inuence function couples into only a few (perhaps 4 or 8) elements of the wavefront
sensor measurement vector s. It follows that the matrix GT

aGa is highly sparse as well, and this
matrix can be decomposed into a Cholesky factorization

GT
aGa = LLT ; (4)

where L is lower triangular and also sparse. In fact, the sparseness of L can be improved by
reordering the columns of the inuence matrix Ga, which corresponds to simply renumbering the
elements of the DM actuator command vector [22, 23]. Once the matrix GT

aGa has been factored,ba may be computed from s in three steps using the equations

v = GT
a s; Lw = v; LT ba = w: (5)

The intermediate variable v is �rst computed from s using the �rst equation, the second equation is
next solved for w using backsubsitution, and the third equation is then similarly solved for ba. Each
of the matrices GT

a , L, and LT is sparse, leading to a very signi�cant reduction in computational
complexity. The reader should note that this technique still obtains the exact least squares solution,
and is in fact less subject to roundo� error than the conventional matrix multiply solution when
na is very large.

The most dramatic reduction in computation requirements achieved through the use of sparse
matrix techniques are obtained not in applying the least squares wavefront reconstructor, however,
but in initially computing the matrix factorization GT

aGa = LLT . Fig. 1 plots the number of
oating point operations required for this decomposition as a function of na for a square aperture
geometry and the so-called "Hudgins" or "shearing interferometer" wavefront sensor subaperture
geometry [5]. The number of computations needed to explicitly compute (GT

aGa)
y is also plotted

for comparison. The computational requirements for the two approaches scale as n
3=2
a and n3a,

respectively, leading to a factor of 3:35� 105 advantage for the sparse matrix methods for the case
of an extreme AO system with na = 104. This is a very nontrivial reduction in computational
complexity, but unfortunately the classical least squares reconstructor is not always an appropriate
control algorithm for more sophisticated AO system con�gurations. A more general reconstruction
algorithm that can be optimized for these applications is described below.
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3 Minimum Variance Wavefront Reconstruction

The standard least squares wavefront reconstruction algorithm performs poorly for some AO ap-
plications because the WFS measurement model described by Eq. (1) is oversimpli�ed. The WFS
measurement vector s is in fact a function of the atmospheric turbulence pro�le, not a set of pre-
existing DM actuator command errors that must be nulled to obtain a perfect wavefront. The DM
actuator command vector a should be selected to compensate the turbulence-induced wavefront
error, which is not in general the same problem as �nding the best �t to the WFS measurement
vector s. If the statistics of the atmospheric turbulence pro�le and the WFS measurement noise are
known, minimum variance wavefront reconstruction [7] provides an optimal solution in the sense
of (as the name implies) minimizing the variance of the residual wavefront error remaining after
the DM actuator commands have been applied. This section briey derives one of the standard
representations for the minimum variance reconstructor that can be, with some further work, ef-
�ciently evaluated using sparse matrix techniques. This representation is general enough that it
may be applied to AO applications involving one or several wavefront sensors, deformable mirrors,
atmospheric turbulence layers, and wavefronts to be corrected [8, 11].

A Problem Formulation

The residual wavefront pro�le(s) remaining after commands have been applied to the deformable
mirror(s) will be denoted �, and is de�ned by the equation

� = Hxx�Haa: (6)

The components of � are the values of the residual phase pro�le(s) at a set of grid points in the
telescope aperture plane, x is a vector of phase values on a grid of points on the atmospheric phase
screen(s), a is the DM actuator command vector, and the columns of the matrices Hx and Ha are
the \inuence functions" associated with the discrete phase points and DM actuators. The e�ects
of x and a on the phase � are assumed to be linear, and are evaluated by tracing rays through the
phase screens and DM conjugate planes as illustrated in Fig. 2a. The vector x is a random variable
with zero mean and �nite second-order statistics. These statistics are typically modeled using the
Kolmogorov or von Karman spectrum.

The mean-square residual piston-removed wavefront error will be denoted �2, and is related
to � by the formula

�2 = �TW�; (7)

where W is a symmetric, semi-positive-de�nite matrix. The coeÆcients of W may be de�ned, for
example, so that the value of �2 is equal to the mean-square piston-removed value of a continuous
phase pro�le obtained by interpolating a smooth function through the values of � speci�ed on the
discrete set of grid points [12]. The additional features ofW needed to apply sparse matrix methods
to this problem are outlined in Section 4 below.

The DM actuator command vector a is computed from the WFS measurement vector s using
a linear reconstruction algorithm of the form

a = Es; (8)

where E is the wavefront reconstruction matrix. The WFS measurement s is modeled as

s = Gxx+ n; (9)

where Gx is the phase-to-WFS inuence matrix and n is WFS measurement noise. The elements
of Gx are once again computed by tracing rays from the guide star(s) through the phase screen(s)
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to the wavefront sensing subapertures, as illustrated in Fig. 2b. Eq. (9) di�ers from Eq. (1) for the
least squares reconstruction algorithm in three important ways: s is now a function of x instead
of a, the case of multiple wavefront sensors is allowed, and n is a random vector with zero mean
and �nite second order statistics. This more general noise model is required, for example, to model
multiple natural guide stars of di�erent brightnesses and the e�ects of LGS position uncertainty.

In this notation, the minimum variance reconstructor E� is the value of E that minimizes the
expected value of �2 averaged over the statistics of the phase pro�le x and the WFS measurement
noise n. We generalize this de�nition slightly and write

E� = argmin
E

D
�2 + kjjajj2

E
; (10)

where the angle brackets, h: : :i, denote ensemble averaging over the statistics of noise and turbu-
lence. As shown below, the regularization term kjjajj2 = kaTa must be included (with a very small
value of k) to avoid singularities if the subspace of DM actuator commands having no e�ect on �2

is not a priori known.

B Deriving the Reconstructor

Determining the minimum variance reconstructor E� that minimizes the mean square phase vari-
ance �2 is a least squares minimization problem in the coeÆcients of E. Using the de�nitions for
�2 and a given above in Eq.'s (7) and (8), we may writeD

�2 + kjjajj2
E
=
D
(Hxx�HaEs)

TW (Hxx�HaEs) + ksTETEs
E
; (11)

for the merit function to be minimized. The partial derivatives of this quantity with respect to the
coeÆcients of E must vanish for the optimal value of the reconstructor, i.e.

0 =
@


�2 + kjjajj2�
@Eij

�����
E=E�

: (12)

Di�erentiating Eq. (11) with respect to the coeÆcients of E and rearranging yields the resultD
s(HT

a WHxx)
T
E
=
D
s(HT

a WHaE�s)
T
E
+ k

D
s(E�s)

T
E
: (13)

It is convenient to introduce the notation

Cvw =
D
vwT

E
(14)

for the covariance of two zero-mean random variables v and w. By factoring the non-random
matrices in Eq. (13) outside of the expected value operations, this expression can be rewritten in
the form

(HT
a WHx)Cxs = (HT

a WHa + kI)E�Css: (15)

Eq. (15) can be solved immediately for the minimum variance reconstructor E� if the matrices
Css and HT

a WHa + kI are invertible. The �rst of these two matrices will be invertible whenever
the WFS measurement noise n is nonzero, and the remainder of the paper will restrict attention
to this real-world case. The second matrix HT

a WHa will generally not be invertible for the case
k = 0, i.e. the formally exact value of the minimum variance reconstructor. This matrix will have a
nontrivial null space since there are some modes of DM actuator commands that have no e�ect on
the piston-removed residual wavefront error, for example overall piston adjustments to one or more
of the deformable mirrors in the AO system. Clearly, there is no performance penalty if we require
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that the output of the wavefront reconstruction matrix be orthogonal to null(HT
a WHa), the null

space of HT
a WHa. This requirement is expressed by the constraint equation

NT
wE� = 0; (16)

where the columns of the matrix Nw are a linearly independent set of vectors from null(HT
a WHa).

This constraint implies the condition NwN
T
wE�Css = 0 as well, which may be summed with Eq. (15)

to yield the result
(HT

a WHx)Cxs = (HT
a WHa +NwN

T
w + kI)E�Css; (17)

If we are certain that we know a full basis for null(HT
a WHa) it is now possible to set k = 0

and compute the precise value of the minimum variance reconstructor. However, this assumption
may not hold for MCAO systems due to the richer cross-coupling between the actuators on the
multiple deformable mirrors, and in this case k must be set to a (very small) nonzero value to avoid
singularities.

[In passing, we note for future use that Nw will be a low rank matrix with only a small number
of columns, certainly much smaller than the dimension of the DM actuator command vector a.]

Solving Eq. (17) for the minimum variance reconstructor E� now yields the result

E� = (HT
a WHa +NwN

T
w + kI)�1(HT

a WHx)CxsC
�1
ss

= FxEx; (18)

where the variables Fx and Ex are abbreviations for the terms

Fx = (HT
a WHa +NwN

T
w + kI)�1(HT

a WHx) (19)

Ex = CxsC
�1
ss : (20)

The matrix Ex estimates the turbulence pro�le x from the WFS measurement vector s, and the
matrix Fx then fits a DM actuator command vector a to this estimated value. This decomposition
of the minimum variance wavefront reconstructor has been commented upon previously [13], and it
o�ers several useful insights into the reconstruction process. Note, for example, that the estimation
matrix Ex is independent of the value of the weighting matrix W , and that the �tting matrix
Fx likewise does not depend upon the statistics of the WFS measurement noise and atmospheric
turbulence.

For relatively small order AO system, the matrices Fx and Ex can be computed explicitly to
obtain the minimum variance reconstruction algorithm. For higher-order systems it is necessary
to exploit the structure of the the matrices appearing in these de�nitions to obtain more eÆcient
solutions, as described further below.

4 An eÆcient solution for u = Fxv

Eq. (19) for the matrix Fx is weakly similar to Eq. (3) for the least squares wavefront reconstructor,
which suggests the possibility of applying sparse matrix techniques. The matrices Hx and Ha are
sparse, since (as is suggested by Fig 2a), each element of the phase pro�le vector � is a function of
only a few elements of the atmospheric turbulence vector x and the DM actuator command vector
a. However, the structure of the matrix Fx is complicated by the presence of the weighting matrix
W and the extra term NwN

T
w . The following two subsections develop the structure of W in greater

detail, and summarize how sparse matrix methods may still be applied to �nd eÆcient solutions
for u = Fxv.
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A Weighting matrix structure

As described earlier, the matrix W is a positive semide�nite matrix chosen so that the quantity
�TW� equals the mean-square piston-removed wavefront error for the phase pro�le(s) �. In the
wide �eld-of-view case, the vector � will be a concatenation of phase pro�les �1; : : : ; �n from n
di�erent evaluation directions

� =

0B@ �1

...
�n

1CA ; (21)

where each pro�le �i is evaluated on the identical set of grid points in the telescope aperture plane.
To account for aperture edge e�ects more precisely and obtain more accurate values for �2 with a
limited number of grid points, each discrete phase pro�le �i may be associated with a continuous
pro�le 'i(r) through the relationship

'i(r) =
X
j

�ijej(r); (22)

where the terms ej(r) are localized \inuence functions" associated with each point in the grid. The
goal of this section is to determine a value for the weighting matrixW so that the value of �TW� is
actually equal to a weighted sum of the mean-square, piston-removed values of the functions 'i(r),
evaluated over the continuous telescope aperture.

The weighting matrixW is block diagonal, since there is no cross coupling between the distinct
�i and �j in determining the mean-square phase error. Each block is identical up to an overall scale
factor, since the telescope aperture function is identical for each �i but we may wish to assign
di�erent importance to each of the di�erent phase pro�les. The mean square phase error formula
therefore takes the form

�TW� =
nX
i=1

wi(�
i)TV �i; (23)

where w1; : : : ; wn are scalar weights and the matrix V is the same for each phase pro�le. The
coeÆcients of V are de�ned so that the quantity (�i)TV �i is equal to the mean-square, piston
removed value of 'i(r) averaged over the continuous telescope aperture. With the telescope aperture
function denoted as A(r), the matrix V must satisfy the relationship

(�i)TV �i =

Z
dr A(r)

�
'i(r)�

Z
dr0A(r0)'i(r0)

�2
; (24)

where we have assumed for simplicity that the aperture function A(r) has been normalized so thatZ
dr A(r) = 1: (25)

The coeÆcients of the matrix V may now be determined by substituting Eq. (22) into Eq. (24),
expanding the square, and interchanging the order of summation and integration. The result is given
by the formula

V = V0 � V1V
T
1 ; (26)

where the coeÆcients of the matrix V0 and the column vector V1 are de�ned by the integrals

(V0)ij =

Z
dr A(r)ei(r)ej(r); (27)

(V1)i =

Z
dr A(r)ei(r): (28)
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The matrix V0 is sparse, since it is assumed that the inuence functions ei(r) are localized. On
account of Eq. (23), the value of the overall weighting matrix W is now given by the formulas

W = W0 �W1W
T
1 ; (29)

W0 = diag(w1V0; : : : ; wnV0); (30)

W1 = diag(
p
w1V1; : : : ;

p
wnV1): (31)

(Note that the blocks appearing in the de�nition of the matrix W1 are column vectors, not square
matrices.) The key features of this representation are the facts that: (i) the matrix W0 is sparse,
and (ii) the matrix W1 is a low rank matrix with a small number (n) of columns. This structure
enables the eÆcient evaluation of u = Fxv, as described in the following subsection. [24]

B Solution summary

According to Eq. (19) for the matrix Fx, solving the system u = Fxv for u can be accomplished
by �rst computing u0 = HT

a WHxv and then solving u = (HT
a WHa +NwN

T
w + kI)�1u0. Both steps

may be solved more eÆciently by utilizing the facts that the matrices Ha, Hx, and W0 are sparse,
and that the matrices W1 and Nw are low rank matrices with only a few columns.

The �rst of these two steps is conceptually simplest, since it does not involve a matrix inversion.
To evaluate the value of u0 de�ned by

u0 = HT
a WHxv; (32)

we �rst rewrite the matrix HT
a WHx in the form

HT
a WHx =M � UV T ; (33)

where by Eq. (29) the values of M , U , and V are de�ned by the expressions

M = HT
a W0Hx; (34)

U = HT
a W1; (35)

V = HT
xW1: (36)

The matrix M is sparse because each of the matrices Ha, W0, and Hx are sparse, and both U and
V are low rank matrices with only a few columns because the same is true of the matrix W1. It
follows that the vector u0 can be computed eÆciently using the expression

u0 =Mv � U(V T v); (37)

Where all of the matrix-vector operations involve sparse matrices or matrices with only a few rows
or columns.

Solving the second step

u = (HT
a WHa +NwN

T
w + kI)�1u0 (38)

also depends upon a similar sparse-plus-low-rank representation

HT
a WHa +NwN

T
w + kI =M � UV T ; (39)

where the values of the matrices M , U , and V are now given by

M = HT
a W0Ha + kI; (40)

U =
�
HT

a W1 Nw

�
; (41)

V =
�
HT

a W1 �Nw

�
: (42)
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The matrix M is sparse because Ha and W0 are sparse, and the matrices U and V are once again
low rank with only a small number of columns. Thanks to this representation we may now apply
the matrix inversion lemma

(M � UV T )�1 =M�1 �M�1U(I � V TM�1U)�1(M�1V )T ; (43)

which may be veri�ed by multiplying both sides of the equation by M and (M � UV T ) and then
simplifying until an identity is obtained. Substituting Eq.'s (39) and (43) back into Eq. (38) now
yields the result

u =M�1u0 +
n
(M�1U)

n
(I � V TM�1U)�1

h
(M�1V )Tu0

ioo
: (44)

The matrices M�1U and M�1V can be eÆciently precomputed since M is sparse and the matrices
U and V have only a small number of columns. The matrix (I � V TM�1U) can then be computed
and inverted eÆciently because both V and M�1U have only a small number of columns. Eq. (44)
can then be solved eÆciently once these quantities are precomputed, since M is sparse and all
operations following the addition symbol involve only matrices of low rank.

We have not formally evaluated the reduction in complexity that can be obtained by the above
methods, but numerical results on actual computation times will be presented below in Section 6.
The greatest savings are actually in precomputing the matrices, since the number of operations
necessary to compute HT

a WHx and HT
a WHa will scale as the cube of the dimension of a when

utilizing conventional matrix multiplies.

5 An eÆcient solution for u = Exv

This part of the derivation begins by �nding a more explicit representation for the phase estimation
matrix Ex. Using Eq. (9), this matrix may be rewritten in the form

Ex = CxsC
�1
ss

= CxxG
T
x (GxC

T
xxG

T
x + Cnn)

�1

= (GT
xC

�1
nnGx + C�1

xx )
�1GT

xC
�1
nn ; (45)

where the last equality may be veri�ed by multiplying both sides of the expression by GxC
T
xxG

T
x +

Cnn on the right and by GT
xC

�1
nnGx+C�1

xx on the left, and then further simplifying until an identity
is obtained. Sparse matrix methods are not immediately applicable to this representation for several
reasons. Most importantly, the phase covariance matrix Cxx is in general non-sparse, and in fact has
in�nite eigenvalues for the usual case of the Kolmogorov turbulence spectrum. An approximation to
the inverse of Cxx must be chosen which is sparse and still fairly accurate. Secondly, the structure
of the phase-to-WFS inuence matrix Gx and the noise covariance matrix Cnn are complicated by
the tilt uncertainty problem for laser guide stars, and by the full aperture tip/tilt NGS wavefront
sensors that must be included in LGS AO and MCAO systems as a consequence of this e�ect.
The following two subsections describe methods for coping with these complications, and the �nal
subsection of this chapter then outlines how u = Exv can be eÆciently solved for u.

A Approximating the regularizing term C�1
xx

1 Eliminating the Kolmogorov singularity

For a pure Kolmogorov turbulence spectrum, the phase covariance matrix Cxx is not de�ned because
the pure piston mode will have an in�nite variance for each turbulence layer [25]. Even if we restrict
attention to a von Karman spectrum with a large but �nite outer scale, the matrix C�1

xx will be
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ill conditioned, with the pure piston mode of each turbulence layer approximating an eigenvector
with a near-zero eigenvalue. The pure piston mode for each turbulence layer is also an eigenvector
with a zero eigenvalue for the matrix GT

xC
�1
nnGx, since these modes lie in the null space of Gx for

any existing or postulated wavefront sensing concept. The purpose of this subsection is to describe
how to add an additional sparse regularizing term to the sum GT

xC
�1
nnGx+C�1

xx so that this matrix,
which appears in the de�nitions of Ex, will be better conditioned.

To derive this regularizing term, the matrices L and Z are �rst de�ned by the equations

Lij =

(
1 If phase point i is located on screen j,
0 otherwise,

(46)

Zij =

(
1 If phase point i is the origin of screen j,
0 otherwise.

(47)

Each of these matrices has a number of rows equal to the total dimension of the phase error vector
x, and a number of columns equal to the number of turbulence layers. GxL = 0 since each column
of the matrix L is a pure piston mode for one of the turbulence layers, and we note also that
ZTL = I. Consequently we may write

(GT
xC

�1
nnGx + C�1

xx + ZZT )(I � LZT ) = GT
xC

�1
nnGx + C�1

xx � C�1
xx LZ

T

� GT
xC

�1
nnGx + C�1

xx ; (48)

where the approximation follows because the pure piston modes for each turbulence layer are
approximately eigenvalues for C�1

xx with near-zero eigenvalues. Rearranging this expression yields
the relationship

(GT
xC

�1
nnGx +C�1

xx + ZZT )�1 � (I � LZT )(GT
xC

�1
nnGx + C�1

xx )
�1: (49)

The right-hand-side of this expression consists of the matrix inverse appearing in the expression for
Ex on the last line of Eq. (45), followed by the term I � LZT . The action of this second operator
is to adjust the overall piston term of each phase screen layer to obtain a value of zero at the
origin, which will have no impact upon the piston-removed accuracy of the phase estimate. The
left-hand-side of Eq. (49) may therefore be used instead of the term (GT

xC
�1
nnGx+C�1

xx )
�1 to obtain

a slightly modi�ed version of the phase estimator Ex with improved conditioning. The possible loss
of performance due to the approximation made in Eq. (48) will be investigated via simulations in
Section 6 below.

2 A sparse covariance matrix approximation

For the Kolmogorov turbulence spectrum the covariance matrix Cxx and its inverse will be non-
sparse and of full rank, so an approximation of some sort must be made to proceed using the sparse
techniques proposed by this paper. To justify our approximation, we consider the case of a single
continuous turbulence layer of in�nite extent. In this limit case, the bilinear functional de�ned by
the matrix C�1

xx may be approximated as

uTC�1
xx v = uT

D
xxT

E�1
v

=

Z Z
dr dr0 u(r)v(r0)

�D
x(r)xT (r0)

E�1�
=

Z Z
d� d�0 û(�)v̂(�0)

�

x̂(�)x̂�(�0)

��1�
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/
Z
d� û(�)v̂�(�)�11=3

�
Z
d�
h
�2û(�)

i h
�2v̂(�)

i�
/

Z
drr2u(r)r2v(r); (50)

where the spatial Fourier transform of a function f has been denoted as f̂ . The second line follows
because we have assumed an in�nite, continuous phase screen, the third by the Plancheral theorem,
and the fourth by the de�nition of the Kolmogorov turbulence spectrum. The �fth line is based upon
the approximation 11=3 � 4, and the �nal line follows because d(df=dx) = 2��xif̂ . In other words,
the quantity uC�1

xx v
T is approximately proportional to the inner product between the Laplacians,

or curvatures, of u and v.
Since this heuristic argument is valid for all choices of u and v, it suggests that we can approx-

imate C�1
xx in the case of a single discrete turbulence layer as

C�1
xx � CTC; (51)

where C is proportional to a discrete approximation of the Laplacian operator as illustrated in
Fig. 3, with a constant of proportionality depending upon the strength of the turbulence. For a
multilayer turbulence pro�le, the matrix C becomes a weighted sum of one such term per layer.
The approximation to C�1

xx is quite sparse, since the matrix C has no more than 5 nonzero elements
per row. This computational simpli�cation was �rst suggested and evaluated in [18] for the case of
a conventional NGS AO system, but the motivation provided by Eq. (50) above and the extension
to more than one atmospheric turbulence layer were both overlooked. We note that the bound-
ary conditions on C illustrated in Fig. 3 were choosen somewhat arbitrarily, but based upon the
numerical results presented in section 6 below there is no motivation for optimizing them further.

Combining this approximation with the discussion in the preceding subsection, the phase es-
timation matrix we propose to evaluate is given by the expression

E0
x = (GT

xC
�1
nnGx + CTC + ZZT )�1GT

xC
�1
nn : (52)

The remainder of this section describes how E0
x can be evaluated using sparse matrix techniques, and

Section 6 assesses the loss in phase estimation accuracy incurred by making these approximations.

B Matrix structure for laser guide stars

As mentioned previously, the noise covariance matrix Cnn is no longer diagonal for the case of laser
guide star (LGS) WFS measurements due to the e�ect of LGS position uncertainty. The exact
position of a LGS guide star projected into the sky is variable due to both fundamental e�ects of
atmospheric turbulence and practical error sources in the laser system, and (at least for now) there
is no independent means of measuring the actual position with any accuracy. This motion of the
guide star is indistinguishable from overall wavefront tilt to the wavefront sensor, resulting in an
additional source of measurement noise that is fully correlated between all of the subapertures of
a particular WFS. The matrices Cnn and GT

xC
�1
nnGx are no longer sparse when this noise term is

included, complicating the application of sparse methods to the evaluation of the phase estimation
matrix E0

x.
More importantly from a practical perspective, one or more natural guide stars must always be

included in the guide star constellation of a LGS AO system to measure the overall tip/tilt mode
of the wavefront error, since the tip/tilt measurement from the LGS WFS is very noisy due to the
uncertainty of the guide star position. The overall tip/tilt measurement from a NGS WFS with only
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one or a few subapertures will depend upon phase values distributed across the entire telescope
aperture, further degrading the sparseness of the term GT

xC
�1
nnGx appearing in the formula for E0

x.
Fortunately, both of these e�ects are low rank adjustments to the matrix, permitting the use of the
matrix inversion lemma as used in Section 4 above. The remainder of this subsection introduces the
notation required to discuss the natural- and laser guide star components of the WFS measurement
vector s, and describes the form of the noise covariance matrix C�1

nn when LGS position uncertainty
is present.

For the most general case of either a conventional AO or MCAO system using a combination
of natural and/or laser guide stars, it is still possible to decompose the WFS measurement vector
s into a higher-order component sh and a tip/tilt component st. The component sh includes the
measurements from all wavefront sensors with two or more subapertures, while st consists of the
tip/tilt measurements from NGS sensors with only a single subaperture. The dimensionality of st is
consequently equal to twice the number of tip/tilt natural guide stars, typically much smaller than
the dimensionality of the higher-order component sh. With this de�nition the WFS measurement
model de�ned by Eq. (9) can be rewritten as

s =

 
sh
st

!

=

 
Gh

Gt

!
x+

 
nh
nt

!
; (53)

where the dimensionality of nt and the number of rows of Gt are also equal to twice the number of
tip/tilt NGS. The matrix Gt is consequently of low rank relative to the overall size of the matrix
Gx.

With the WFS measurement noise written as in Eq. (53), the form of the noise covariance
matrix now becomes

Cnn =

 
Nh + �2t TT

T 0
0 Nt

!
: (54)

The terms Nh and Nt describe the statistics of the noise within the higher-order and tip/tilt
wavefront sensors themselves and are diagonal matrices. The e�ect of LGS position uncertainty is
captured in the term �2t TT

T , where �t is the RMS one-axis position uncertainty for each LGS,
and the columns of the matrix T are the modes of WFS measurement noise induced by the LGS
position errors. There are two such modes for each LGS, corresponding to the tip and tilt (or x-
and y) position errors. Each column of T is f0; 1g-valued, with the 1's matching those elements of
sh which are the x- or y- measurements for a particular laser guide star. The point for the current
discussion is that the matrix T is of low rank, since the number of laser guide stars is very small
compared to the total number of WFS measurements.

[The above representations of s and Cnn can also be applied to the case of a conventional AO
or MCAO system with only higher order NGS WFS measurements, simply by taking �t = 0 and
setting Gt and Nt to be empty matrices.]

The inverse of the noise covariance matrix Cnn will be needed to evaluate the phase estimation
matrix E0

x. As before, the non-sparse term in this inverse may be evaluated using the matrix
inversion lemma, yielding the result

(Nh + �2t TT
T )�1 = N�1

h � �2tN
�1
h T (I + �2t T

TN�1
h T )�1(N�1

h T )T

! N�1
h �N�1

h T (T TN�1
h T )�1(N�1

h T )T as �2t !1 (55)

The assumption that the RMS LGS position uncertainty is e�ectively in�nite is only slightly conser-
vative in practical applications; �t will be no smaller than the actual RMS value of the turbulence-

13



induced tip/tilt errors unless the size of the laser launch telescope is actually larger than the
aperture of the AO system. The measured position of the LGS is consequently of little or no use
in estimating the tip/tilt error, which is the motivation for including one or more natural guide
stars as part of the guide star constellation in the �rst place. The computational advantage gained
by treating �t as in�nite is that the second line of Eq. (55) is a sparse matrix with a low rank
adjustment, since Nh is diagonal and the matrix T has only a few columns.

C Solution summary

With the above preparations we are �nally ready to describe the eÆcient evaluation of u = E0
xv

using sparse matrix methods. As in Section 4 for the actuator �tting operator Fx, the solution is
given in two steps. The �rst step is the solution of the system

u0 = GT
xC

�1
nn v: (56)

Using the representations of Gx and C�1
nn developed in Eq.'s (53) through (55) above, the operator

appearing in Eq. (56) may be rewritten in the form

GT
xC

�1
nn =

�
GT
hN

�1
h (I � TPT ) GT

t N
�1
t

�
; (57)

where the noise weighted LGS tilt projection operator PT is de�ned as

PT = (T TN�1
h T )�1T TN�1

h : (58)

Proceeding as in Section 4 for the actuator �tting problem, we now write the matrix GT
xC

�1
nn in the

form
GT
xC

�1
nn =M � UV T ; (59)

where the terms M , U , and V are de�ned by the formulas

M =
�
GT
hN

�1
h GT

t N
�1
t

�
; (60)

U = GT
hN

�1
h T; (61)

V =

 
P T
T

0

!
=

 
N�1
h T (T TN�1

h T )�1

0

!
: (62)

The matrix M is sparse because Gh is sparse, Nh is diagonal, and Gt is low rank (with only a few
rows). The matrices U and V are low rank because the matrix T has only a few columns. This
representation allows u0 to be computed eÆciently from v using Eq. (37) above.

[In passing, it may be interesting to note that the operator (I � TPT ) appearing in Eq. (57)
above has the e�ect of subtracting o� the noise-weighted overall wavefront tilt from the LGS WFS
measurements as the �rst step of the wavefront reconstruction algorithm. This preprocessing step,
derived here using the matrix inversion lemma, may be considered \intuitively obvious," and is
already found in the reconstruction algorithms used for many LGS AO systems and simulations.]

The second and �nal step in evaluating u = E0
xv is to eÆciently solve the system

u = (GT
xC

�1
nnGx + CTC + ZZT )�1u0: (63)

Using Eq.'s (53) and (57) above we may write

GT
xC

�1
nnGx + CTC + ZZT =M � UV T ; (64)
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where the matrices M , U , and V are this time de�ned as

M = GT
hN

�1
h Gh + CTC + ZZT ; (65)

U =
�
GT
hN

�1
h T �GT

t N
�1
t

�
; (66)

V =
�
GT
hP

T
T GT

t

�
: (67)

The matrix M is sparse because all of the matrices appearing on the right hand side of Eq. (65)
are sparse. The matrices U and V are low rank with only a few columns because the same is true
of the matrices T , GT

t , and P T
T . We may therefore proceed as in Section 4 for the actuator �tting

operator, applying the matrix inversion lemma and Eq. (44) to solve for u in terms of u0 using
operations that involve only low rank matrices and back substitutions through the sparse matrix
M .

6 Sample numerical results

This section summarizes initial numerical wavefront reconstruction results obtained using the sparse
computational methods developed in Sections 3 through 5 above. The cases considered have been
chosen to address four particular questions:

� How do the approximations introduced in Section 5 with respect to atmospheric turbulence
statistics degrade the accuracy of wavefront reconstruction?

� How large (or small) is the improvement in computational eÆciency relative to the conven-
tional matrix multiply reconstructor (CMMR)? We have concentrated on the time necessary
to precompute the reconstructor, since this is generally the limiting factor in performing AO
simulations.

� How large are the computer memory requirements to store the sparse reconstruction algorithm
(SRA)? Memory requirements are a concern because the SRA computes an estimate of the
full atmospheric turbulence pro�le x, which may have a signi�cantly larger dimensionality
than the DM actuator command vector a.

� What new results can be obtained about the performance of extreme AO and MCAO for
extremely large telescopes, assuming that the SRA enables simulations of high-order AO
systems that were not previously possible?

The results obtained regarding these questions are summarized in the following subsections. Sub-
section A outlines the cases considered and some of the details of the simulation code. Subsection B
summarizes results for low order NGS AO systems which indicate that the loss in performance due
to approximating atmospheric turbulence statistics is entirely negligible. Subsection C and D then
present results for extreme NGS AO and MCAO systems. These results indicate that the reduction
in computation times is very signi�cant, computer memory requirements are generally acceptable,
and the trends in ExAO and MCAO performance with increasing AO system order are very, very
gradual.

A Cases Considered

Table 1 presents the atmospheric turbulence pro�le used for the simulations described in this section.
This 6-layer pro�le is based upon thermosonde and generalized SCIDAR measurements taken at
Cerro Pachon, Chile, the site of the Gemini-South telescope [26]. The pro�le has been scaled to
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obtain an r0 of 16 cm at a wavelength of 0:50�m, corresponding roughly to median conditions at
Cerro Pachon. The resulting value of �0 is 2.65 arc sec or 12:85�rad.

Table 2 summarizes the sample AO systems that have been evaluated. These include conven-
tional NGS AO systems with telescope aperture diameters of 4, 8, 16, and 32 meters, and NGS and
LGS MCAO systems with aperture diameters of 8 and 16 meters. The WFS subaperture width
and DM actuator pitch for the conventional NGS AO systems was 0.5 meters, with performance
evaluated for a single evaluation direction and an on-axis guide star. For the MCAO system perfor-
mance was evaluated at the center, edges, and corners of a one square arc minute �eld of view, with
the weights wi assigned to the nine evaluation directions in Eq. (23) determined using Simpson's
rule. Five higher order guidestars were located at the center and corner of the 1 arc minute �eld for
both the NGS and LGS MCAO systems. For LGS MCAO, these guide stars were placed at a range
of 90 km, and four tip/tilt natural guide stars were also located at the edges of the 1 arc minute
�eld. The subaperture width was also equal to 0.5 meters for the higher-order wavefront sensors in
both the MCAO systems. Both MCAO systems also included two deformable mirrors at conjugate
ranges of 0.0 and 5.16 km with actuator pitches of 0.5 meters, and a third DM at a range of 10.31
km with a 1.0 meter actuator pitch.

The code written to evaluate the sparse reconstruction algorithm (SRA) for these AO system
consisted of three basic parts. The �rst part computed the inuence matrices Hx, Ha, and Gx, the
phase error weighting matrixW , and the approximate regularization matrix CTC for the given tur-
bulence pro�le, aperture geometry, DM con�guration, and guide star constellation. As illustrated
in Fig. 2, the �rst four matrices were computed assuming linear spline inuence functions. The ma-
trix elements corresponding to boundary actuators, phase points, and subapertures were computed
with the circular telescope aperture taken into account. The exact turbulence covariance matrix
Cxx was also computed (with the full aperture piston mode removed to eliminate the singularity)
for simulation cases with an aperture diameter of 8 meters or less.

The second part of the code then computed the SRA, as well as the CMMR for the 4- and
8-meter simulations. The �nal step was to evaluate the SRA, and for small cases also the CMMR,
via Monte Carlo simulation, using 100 turbulence pro�le realizations generated as the Fourier
transforms of white noise �ltered by the Kolmogorov spectrum. Identical pro�les were used to
evaluate the SRA and the CMMR for the 4- and 8-meter cases.

The atmospheric turbulence pro�le sampling used to compute the reconstructors was at twice
the spatial resolution of the deformable mirror actuators, i.e. grid point spacings of either 0.25
or 0.5 meters for the six turbulence layers. The simulations themselves used grids with spatial
resolutions sixteen times �ner than the DM actuator spacings, i.e. 0.03125 or 0.0625 meters. A few
preliminary simulation results indicated that further increasing the resolution used to compute the
reconstructors had a negligible e�ect on estimation accuracy, and that the \simulation �tting error"
arising from unsampled high spatial frequency turbulence scaled as the two-thirds power of the grid
spacing used in the simulation. We believe that this \simulation �tting error" results from omitting
the spatial aliasing of the highest spatial frequency turbulence into the WFS measurements, which
is a source of measurement error. Using this scaling law, the magnitude of this error with the chosen
simulation grid spacings is estimated to be a mean-square OPD of about 0:0028�m2, which is small
compared with the e�ects studied in the following simulations.

B Results for Low order NGS AO

For an initial performance comparison between the SRA and the CMMR, the �rst AO system
studied was a conventional, narrow �eld-of-view NGS AO system of order 8 � 8 with an on-axis
guide star. The sources of wavefront error in these simulations were consequently WFS measurement
noise and and DM/WFS �tting error, and we considered a range of WFS noise levels such that
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the RMS wavefront estimation error due to measurement noise varied from about one-half to three
times the RMS �tting error. The results of these simulations are presented in Table 3. Note that
four signi�cant digits are necessary to detect the performance variations between the SRA and
the CMMR at low noise levels, and at the largest noise level considered the values of �2 for the
two approaches still agree to within about 1%. At least in this case, the degradation in wavefront
estimation accuracy due to the approximations made in deriving the SRA will be negligible for
practical applications.

C Results for Extreme NGS AO

We next varied the order of the NGS AO system for a �xed, small value of WFS measurement noise.
The results obtained are summarized in Table 4. For an order 16 � 16 system it is still possible
to compute the CMMR without signi�cant diÆculty, and in this case the performance di�erence
between the SRA and CMMR remains very, very small. For the SRA the value of �2 grows by
about 8 per cent as the order of the NGS AO system increases from 16� 16 to 64� 64. This trend
indicates that the algorithm remains numerically stable. It is also qualitatively consistent with the
expected slow growth in reconstructor noise gain as a function of AO system order, although we
have not compared these values explicitly against standard scaling laws [12].

We note that the time required to compute the SRA increases somewhat more slowly than
the three-halves power of the number of DM actuators, and that the time needed to compute
the reconstructor for an order 64 � 64 NGS AO system is about 9 seconds on a 1 GHz Pentium
III using Matlab 6 [27]. Signi�cantly larger cases could easily be evaluated for truly extreme AO
simulations. We have not recorded the time necessary to apply the reconstructor, but this will be
essentially proportional to the number of nonzero coeÆcients in the sparse representations of the
estimation and �tting matrices Ex and Fx, or equivalently the amount of memory needed to store
these matrices. These storage requirements increased by a factor of about 26 while the number of
DM actuators increased by a factor of 3461=257 = 13:5. For the CMMR, the corresponding increase
would be about 13:52 = 181.

D Results for NGS and LGS MCAO

Finally, Table 5 summarizes the results obtained on wavefront estimation error and computational
eÆciency for the NGS and LGS MCAO systems with parameters as described in Table 2. We have
considered systems of aperture diameters 8 and 16 meters with a �xed WFS subaperture size of 0.5
meters, yielding AO system orders of 16 � 16 and 32 � 32 respectively. For the order 16� 16 case
it is possible to compute and simulate both the CMMR and SRA methods, and the mean-square
estimation errors for the two techniques are again virtually identical. We note that the simulated
performance results for the SRA are actually very slightly superior to the CMMR in the case of LGS
MCAO, presumably due to the e�ects of �nite numerical precision in evaluating the reconstructors
and the �nite number of simulation trials used to obtain the performance estimates. Also, the
performance of the SRA is almost independent of telescope aperture diameter for both NGS AO
and LGS MCAO, suggesting that results for a 32 meter, order 64 � 64 system may very likely be
similar as well. We are unable to explicitly evaluate the 32 meter case at this time due to computer
memory limitations.

The computer memory requirements for the MCAO cases are very signi�cantly greater than
for the Extreme AO case considered in Table 4 because (i) the entire 3-dimensional turbulence
pro�le must be evaluated for the MCAO case and (ii) the DM-to-WFS inuence matrix Gx and
the matrices derived from it are much less sparse thanks to the presence of multiple guide stars
distributed over an extended �eld-of-view. The memory requirements predicted for the 32 meter
case still appear to be feasible for existing computer systems, but not for our available PC's.
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The increased �ll factor for these matrices has negative implications for the e�ort required to
compute the SRA as well, but the time required for the 16 meter, order 32� 32 system with 2417
DM actuators and 4284 total WFS subapertures is still on the order of 1.7 to 1.9 hours, representing
factor of 8 improvement over the CMMR. Extrapolating these results via power laws to an order
64� 64 MCAO system yields a predicted improvement factor of about 30 or 40 to 1. For the clock
speed of our Pentium III, this would reduce the time needed to compute the reconstructor from
about one month to the order of one day.
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Table 1. Atmospheric turbulence pro�le used for simulations. This table lists the altitudes
and relative weights for a six-layer atmospheric turbulence pro�le derived from thermosonde
and generalized SCIDAR measurements at Cerro Pachon, Chile. The overall pro�le was
scaled to yield r0 = 16 cm at � = 0:5�m. The corresponding isoplanatic angle is �0 =
12:85�rad.

Layer Altitude, km Relative layer weight

1 0.00 0.652
2 2.58 0.172
3 5.16 0.055
4 7.73 0.025
5 12.89 0.074
6 15.46 0.022
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Table 2. Simulated AO system parameters. See the text for further details.

System NGS AO MCAO

Evaluation �eld On-axis 60 arc second square
Aperture diameter, m 4, 8, 16, 24, 32 8, 16

DM conjugate ranges, km 0.0 0.0, 5.16, 10.31
DM interactuator spacing, m 0.5 0.5, 0.5, 1.0

Higher order guidestars:
Number 1 5
Subaperture spacing, m 0.5 0.5
Directions, arc min (0; 0) (0; 0) and (�0:5;�0:5)
Range, km 1 1 (NGS) or 90 (LGS)

Tip/tilt guidestars:
Number 0 0 (NGS) or 4 (LGS)
Directions, arc min � (�0:5; 0) and (0;�0:5)
Range, km � 1
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Table 3. Reconstructor performance vs. WFS measurement noise for an order 8 � 8 NGS
AO system. This table compares the residual mean square wavefront error �2 due to the
combined e�ects of �tting error and WFS measurement noise for the conventional matrix
multiply implementation of the minimum variance estimator (CMMR) and the sparse recon-
struction algorithm (SRA) described in this paper. The approximations made in modeling
atmospheric turbulence statistics for the latter algorithm have only a very modest e�ect on
the mean-square wavefront estimation error �2.

WFS noise, arc sec CMMR �2, �m2 SRA �2, �m2

0.02 0.01304 0.01306
0.04 0.01734 0.01737
0.08 0.03218 0.03229
0.16 0.07834 0.07941
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Table 4. SRA wavefront �tting error vs. order of correction for a conventional NGS AO sys-
tem. This table summarizes the performance of the sparse reconstruction algorithm (SRA)
for a conventional NGS AO scenario where the only signi�cant source of wavefront error is
the �nite spatial resolution of the DM actuators and WFS subapertures. The natural guide
star is coincident with the evaluation direction, and the noise equivalent angle for the WFS
is an almost negligible 0.02 arc seconds. The DM actuator spacing is held constant, so the
AO order of correction is proportional to the telescope aperture diameter. The SRA esti-
mation error is virtually identical with the conventional matrix multiply minimum variance
reconstructor (CMMR) for the case of the order 16 � 16 AO system, and increases fairly
gradually with increasing telescope aperture diameter. The computation times and memory
requirements for the SRA grow much less rapidly than the O(n3) and O(n2) scaling laws
that apply for the case of the CMMR.

Aperture Order of DM CMMR SRA SRA computation SRA memory
diameter, m correction actuators �2; �m �2; �m time, sec requirements, MB

8 16� 16 257 0.01334 0.01336 0.25 0.72
16 32� 32 921 { 0.01392 1.17 3.81
24 48� 48 1981 { 0.01416 3.60 NA
32 64� 64 3461 { 0.01440 8.94 19.30
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Table 5. Results and scaling law predictions for CMMR and SRA performance for MCAO
systems. The simulated MCAO parameters are summarized in Table 2 above. The paren-
thesized values are extrapolations based upon the standard O(n2) and O(n3) power laws
for the CMMR, and 2-point power laws curve �ts for the SRA.

NGS MCAO LGS MCAO

Aperture diameter, m 8 16 32 8 16 32
System order 16� 16 32� 32 64� 64 16� 16 32� 32 64� 64
Total DM actuators 789 2417 (9700) 789 2417 (9700)
Total WFS subapertures 1020 4280 (17120) 1020 4280 (17120)

CMMR �2; �m 0.01904 { { 0.02220 { {
Time to compute CMMR, hours 0.51 (14.66) (947.66) 0.51 (14.66) (947.66)
Memory to store CMMR, MB 14 (129) (2071) 13.8 (130) (2086)

SRA �2; �m 0.01932 0.01877 { 0.02190 0.02220 {
Time to compute SRA, hours 0.19 1.92 (33.90) 0.21 1.68 (22.20)
Memory to store SRA, MB 112 680 (6380) 99 561 (4852)
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Fig. 1. Computation requirements for conventional and sparse calculations of classical least
squares reconstruction algorithms. These results are for a square aperture geometry and the
so-called \Hudgins" or \shearing interferometer" wavefront sensor geometry. The number
of oating point operations needed to compute the control algorithm using a conventional
matrix inversion has been evaluated for systems of order 100, 225, and 400 and extrapolated
using the predicted third-order power law. The number of operations necessary for the sparse
matrix factorization has been explicitly computed for AO systems of up to order 90; 000,
and scales with the three-halves power of the order of the system.

Fig. 2. Inuence matrix models. Part (a) of the �gure illustrates the relationship between
the turbulence phase screen vector x, the DM actuator command vector a, and the residual
phase error vector �. These three vectors are de�ned as values on grids of points in the planes
of the phase screens, the DM conjugate locations, and the telescope aperture, respectively.
The inuence matrices Hx and Ha are de�ned by tracing rays through the phase screens
and mirrors as illustrated. Part (b) of the �gure illustrates the similar relationship between
the phase screen vector x and the WFS measurement vector s. In this case rays are traced
from the guide star(s) through the phase screen(s) to obtain a wavefront in the telescope
aperture plane, and the WFS measurements are then computed as the average x- and y

wavefront gradients over each subaperture.

Fig. 3. Discrete Laplacian operator. This �gure illustrates the coeÆcients for two rows of
the discrete Laplacian, or curvature, operator C appearing in Eq. (51). The dots represent
the grid points of the discrete turbulence layer. The values printed in a regular font are the
5 nonzero coeÆcients to compute the curvature of the phase pro�le at the interior grid point
A. The italicized values are the nonzero coeÆcients to compute the curvature at the grid
point B on the boundary of the phase pro�le. The coeÆcients which should be assigned to
grid points laying outside of the boundary have been \folded over" back into the grid so
that the sum of the coeÆcients remains zero.
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