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ABSTRACT

A Prime Focus Wavefront Sensor (PFWFS) has been designed and built at the Gemini
Observatory. The system contains a Shack-Hartmann (SH) wavefront sensor and has been
designed to use commercial components. The primary mirror of the 8m Gemini Telescope has a
complex active optics system1,2 that needs to be calculated during commissioning. The wavefront
sensor was built to measure the image quality at prime focus, this eliminates the secondary mirror
introducing supplementary aberrations. It has been successfully used during commissioning, to
test the active optics.
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1. INTRODUCTION

The PFWFS is composed of 3 main subsystems (see figure 1):

1) The opto-mechanical assembly mounted on the top end of the telescope. Its function is to
position the wavefront sensor relative to the primary mirror and to retain the optics in place.

2) The guiding and image acquisition unit. Its function is to maintain the primary mirror focus
image stable during a measurement and record the images before transfer to the analysis
software.
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Figure 1: PFWFS overall layout

Telescope top

Mount
control
system

Guiding
camera

Guiding
software

Primary
control
system



3) The analysis software calculates the zernikes. These zernikes are then applied to the primary
mirror active optics system to change the shape of the mirror and improve the image quality.

We also developed a calibration bench in order to align and calibrate the prime focus wavefront
sensor before mounting it on the telescope.  Finally, we explain the nighttime operation of the
PFWFS and present some results obtained during commissioning.

2. THE OPTO-MECHANICAL ASSEMBLY

The assembly incorporates 3 axes of translation motion and an aperture wheel. It is designed for
installation on the telescope top end, at prime focus (see figure2). A black anodized ring supports
the 3 XYZ stages and is attached on the top end using a 3 points interface. The stages are
positioned so that they are aligned with the telescope axes. These stages are from the ATS100
positioning stage series, fabricated and calibrated by Aerotech Inc (see table1 for details). They
use a 50SMB2 motor and a E1000LD rotary encoder with a 2steps/mm control resolution. They
are operated using a Unidex 12 4-axes controller in a 19” rack mount configuration including a
DM4001-40-F1 amplifier. It is mounted on the –Y side of the telescope on the top ring,
approximately 5 meters away from the stages.
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Figure 2: The opto-mechanical assembly.



Stages Reference Travel (mm) Max Speed
mm/sec

Linear resolution
(mm)

Accuracy (mm)

X ATS100-50 50 50 1 2
Y ATS100-150 100 50 1 5
Z ATS100-150 100 50 1 5

Table1: Stage specifications

The controller has a hand panel in the front for manual positioning of the stages or it can be
controlled from a standard PC using its serial port. The control PC is located at the bottom of the
telescope and connected to the controller via cables attached to the telescope structure. A
command language enables the user to define small scripts to move the system, for example “in”
or “out” of the beam. Instant commands are also available to control the stage in real time.

3. THE GUIDING AND ACQUISITION SYSTEM

The optics
The wavefront sensor optical layout is shown in figure 3. The light from the f/1.8 primary mirror
enters the PFWFS and goes through a collimating lens. After the beam is split by the beamsplitter
cube, one beam goes to the guiding camera and the other one toward the wavefront sensor. The
beam diameter is equal to 8mm. The WFS is a Shack-Hartmann type using lenslet arrays
fabricated by Adaptive Optics Associate (AOA). These are standard off-the-shelf monolithic
lenslet modules replicated onto glass substrate. The lenslet array 400 (see table 3 for details) has
proven to be the most beneficial. It has been very useful when measuring the primary mirror figure
either before optimizing its shape or after introducing known aberrations for testing. The other
lenslet array proved to be more difficult to use because of its reduced sensitive range. The PFWFS
is also designed to accommodate a filter after the lenslet array but it was not used during
commissioning.
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Figure 3: Shack-Hartmann wavefront sensor optical layout.



Optical element Reference Specification
Collimating lens Melles Griot 06GLS 003 Foc = 14.5mm

Clear aperture = 8mm
Cube beamsplitter Melles Griot 03BSC 003 Size 10mm
Lenslet array 250 AOA 250-18-SX Foc=18mm

Lenslet shape; square
Lenslet size = 250mm
Illuminated lenslets = 32x32

Lenslet array 400 AOA 400-24-SX Foc=24mm
Lenslet shape; square
Lenslet size = 400mm
Illuminated lenslets = 20x20

Table 2: WFS optics

Optical element Reference Specification
Mirror Melles Griot Size

Angle = 22.3 degrees
Focusing lens Melles Griot 01LAO 019 Foc = 25mm

Clear aperture = 12mm

Table 3: Guider optics

The guiding optical layout is shown
on figure 4. The collimated light
coming out of the beamsplitter cube
is reflected on a folded mirror and
directed towards the focusing lens.

The guiding and image acquisition
system

The guiding camera is composed of a
Pulnix TM-7 series camera on which
is mounted a standard C-mount
objective with the focusing lens. The
field of view is around 20 arcsec on
the sky.  The images are displayed on
a UNIX Sun station. The guiding
software calculates the centroid
coordinates of the star image in a
user-defined guiding box, and sends
offsets directly to the telescope
mount to keep it centered in that
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Figure 4: guiding optical layout



box. The overall frequency of the system is between 5 and 10 Hz, which was sufficient for this
wavefront sensor.

The wavefront sensor camera is a Photometrics Sensys K1600 camera. It has a high-speed
mechanical shutter to select the camera integration time. The camera is connected to a 12bit video
card on a PC which stores the images. In the acquisition software called Vwin, we wrote a script
to average and format the WFS images before sending them to the data analysis software. We
average the images so that we get a better measurement of the mirror shape, without taking into
account the atmospheric turbulence.

Cameras Pixel
number

Pixel size
(mm)

Pixel scale on
sky (arcsec)

Number of Pixels
per lenslet

Comments

Pulnix TM-7 768x494 8.4x9.8 0.07x0.08 Interline
transfer

Photometrics
Sensys K1600

1536x1024 9x9 Lenslet 250: 0.1
Lenslet 400: 0.08

Lenslet 250: 28
Lenslet 400: 44

12 bit
cooled CCD

Table 4: Cameras characteristics. The field of view per lenslet is 2.9 arcsec for the lenslet array
250 and 3.5 arcsec for the lenslet array 400

4. THE DATA REDUCTION SYSTEM
The software package used for analyzing the wavefront sensor data is called WaveLab written by
Adaptive Optics Associates, Inc., a United Technologies company. WaveLab is a Shack-
Hartmann wavefront sensor data analysis system that permits any Shack-Hartmann test data to be
converted to wave fronts.  The software uses a graphical interface that makes standard data
reduction straightforward and also provides a command line interface for customized data
handling.

WaveLab is an extension to the tcl scripting language and Gemini has taken advantage of the
capability of customizing the scripts to handle the data in a specialized way.  Gemini has written
some in-house tcl scripts, allowing for a friendly user interface, by doing so, it has made data
reduction quick and easy. The tcl scripts will take a specified image and allow the user to interact
with the image. By creating one mask, it can be stored and used to reduce all subsequent images,
provided no physical changes are made, such as a lens change. Figure 5 shows the GUI used to
begin the WaveLab data reduction process.

The tcl script allows the user, file manipulation, setup varies parameters, do calibrations, make
OPDs and fit Zernikes.  It has various tools, which lets the user manipulate the image format and
files, as well as several engineering tools.   Once the user has created the necessary files needed
for data reduction, they can be saved to a configuration file. From that point on, the configuration
file can be saved and each night it can be loaded into wavelab. The user can run up the software,
load the configuration file and start making OPD images and fitting Zernikes almost immediately.



5. THE CALIBRATION BENCH
The calibration bench (Figure 6) gives a f/1.8 output beam, same as the primary mirror. It is
composed of a He-Ne laser with a beam expander, a focusing lens and a spatial filter. It includes
also a polarizer to control the beam intensity. A XYZ stage assembly supports the wavefront
sensor. The calibration bench is used before mounting the wavefront sensor on the telescope to
measure the reference positions of the lenslet array spots, and to get a reference position on the
guider. For an order of accuracy, we obtain usually between 2 and 3nm RMS on the wavefront by
taking multiple reference images during one calibration on the wavefront sensor. If we compare
reference images taken over different months, we obtain around 20 to 30nm RMS on the
wavefront. This accuracy is good enough for measurements that are well above 100nm RMS.

Component Reference Comments
HE-NE laser Melles Griot  05 LHP 111 1mW power output
Polarizer Melles Griot  03 FPG 001
Focusing lens Melles Griot 04OAS012 F=10.8mm
Spatial filter Melles Griot  04 PPM 001 2mm diameter

Table 5: calibration bench components.

6. NIGHTTIME OPERATIONS
First, we pointed to a bright star to align the PFWFS relative to the primary mirror, using a screen
mounted on the PFWFS. Then, we centered it on the optics using the XYZ stages and tested the
guider. Once the beam is lined up with the alignment camera, wavefront sensing can begin.
Usually a star with a magnitude of 6-8 in the visual is chosen. Integrations begin and the data is
reduced using WaveLab in real time. One major advantage of using the PFWFS is the minimum of
optics the beam has to be directed along. This makes analysis of the primary mirror much easier.

The first image collected is usually made into a Mask image, shown in Figure 7. It uses data
obtained from starlight to identify the subapertures on the light sensor plane and to match them to
subapertures in the pupil’s plane.  Generally, reference data include the effect of the system’s
optics on the light beam. Also, we verify the XY orientation of the pupil image relative to the
primary mirror axes by vignetting the telescope pupil with the dome.

Figure 5: The graphical user interface used to begin the data analysis.



Once this is completed another image is taken and after checking the OPD’s to make sure
everything has been set up correctly, images are taken and Zernikes are fit to the incoming data.
Once the Zernikes are calculated, they are then put into the adaptive optics (aO) software and the
forces are adjusted.  More data is collected, reduced and applied to the forces until the root mean
square of the optical path difference (OPD) is within the Gemini specs. All this can be
accomplished within a relatively short period of time.

Figure 6.  WFS Calibration Bench.

Polarizer Focusing Lens Spatial Filter

Figure 7: Mask image made from a telescope image, and positioned over a calibration image.



7. RESULTS FROM GEMINI COMMISSIONING
We present results taken on the Gemini 8m telescope during commissioning last August 1999 and
September 1999.  Presented are vector maps, optical path differences and elevations tests.

Vectors maps are plotted to show the slope of the spots (see figure 8). They all point in the same
direction, provided no zernikes are removed. If they fail to do so, there is most likely something
wrong with the wavefront sensor set up. We also present a vector map showing what they look
like after having tip/tilt and focus removed. The vector maps are then turned into OPDs. The
zernikes values are calculated from these images and applied into the primary mirror control
system. After multiple iterations, the image quality is improved. Figure 9 is an example of such a
result, where the RMS was reduced to 0.177 micron.

ZERNIKES values:
    2   -0.170246 # rcos(t) (X Tilt)
    3    0.034938 # rsin(t) (Y Tilt)
    4   -0.004357 # 2r^2-1 (Focus)
    5   -0.123626 # r^2cos(2t) (0 Astigmatism)
    6    0.114531 # r^2sin(2t) (45 Astigmatism)
    7    0.204063 # (3r^2-2)rcos(t) (X Coma)
    8   -0.066433 # (3r^2-2)rsin(t) (Y Coma)
    9    0.018060 # 6r^4-6r^2+1 (Spherical)
   10   -0.073964 # r^3cos(3t)
   11   -0.050465 # r^3sin(3t)
   12   -0.109250 # (4r^2-3)r^2cos(2t)
   13   -0.054909 # (4r^2-3)r^2sin(2t)
   14   -0.014879 # (10r^4-12r^2+3)rcos(t)
   15   -0.020338 # (10r^4-12r^2+3)rsin(t)
   16   -0.028788 # 20r^6-30r^4+12r^2-1
   17    0.039307 # r^4cos(4t)
   18   -0.012580 # r^4sin(4t)
   19   -0.013830 # (5r^2-4)r^3cos(3t)
  20   -0.018696 # (5r^2-4)r^3sin(3t)

Figure 9: OPD image with a RMS of 0.177nm, and corresponding zernikes.

Figure 8: (a) Vector map with no tip/tilt and focus removed, (b) vector map with tip/tilt and
focus removed.
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The PFWFS was also used to determine the evolution of the primary mirror shape versus
elevation. In this case, we maximize image quality at the zenith, by dialing out the lower order
zernikes and making measurements without using the active optics. Figure 10 shows the results
obtained during another night, for astigmatism and coma.  You can see the strong variation of 0
astigmatism versus elevation, and the same for Ycoma.

Figure 10.  Astigmatism and coma results.



8. CONCLUSION

This paper described the Prime Focus Wavefront Sensor used during commissioning of the
Gemini 8m telescope. Mainly designed and fabricated using off-the-shelf components, this is an
instrument with a relatively low financial overhead and low maintenance. Its robust performance
gave us the ability to measure most of the primary mirror control system characteristics
repeatedly. After mounting of the secondary mirror on the telescope and because of the PFWFS’s
good performance, the PFWFS was not stored on the shelf but easily transformed into a
Cassegrain Focus Wavefront Sensor (CFWFS) to continue wavefront measurements of the whole
telescope.
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